MFC: A Multi-Scale Fully Convolutional Approach for Visual Instance Retrieval

摘要

Previous work has shown that feature maps of deep convolutional neural networks (CNNs) can be interpreted as feature representation of an image. Image features aggregated from these feature maps have achieved steady progress in terms of performances on visual instance retrieval tasks in recent years. The key to the success of such methods is feature representation. In this paper, we study how to represent an image using discriminative features. We demonstrate first that image size is an important factor which affects the performance of instance retrieval but has not been thoroughly discussed in previous work. Based on experimental evaluations, we propose a multi-scale fully convolutional (MFC) approach to encode the image efficiently and effectively. The proposed method is simple to implement, which does not employ sophisticated post-processing techniques such as query expansion, yet shows promising results on four public datasets.

出版物
2017 IEEE International Conference on Multimedia and Expo Workshops, ICMEW 2017
王伟
王伟
副研究员、硕导

主要从事多媒体内容安全、人工智能安全、多模态内容分析与理解等方面的研究工作。

董晶
董晶
研究员、硕导

主要从事多媒体内容安全、人工智能安全、多模态内容分析与理解等方面的研究工作。详情访问:http://cripac.ia.ac.cn/people/jdong

谭铁牛
谭铁牛
研究员,博导

主要从事图像处理、计算机视觉和模式识别等相关领域的研究工作,目前的研究主要集中在生物特征识别、图像视频理解和信息内容安全等三个方向。