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Abstract—Image classification is a hot topic in computer vision and pattern recognition. Feature coding, as a key component of image
classification, has been widely studied over the past several years, and a number of coding algorithms have been proposed. However,
there is no comprehensive study concerning the connections between different coding methods, especially how they have evolved. In
this paper, we first make a survey on various feature coding methods, including their motivations and mathematical representations,
and then exploit their relations, based on which a taxonomy is proposed to reveal their evolution. Further, we summarize the main
characteristics of current algorithms, each of which is shared by several coding strategies. Finally, we choose several representatives
from different kinds of coding approaches and empirically evaluate them with respect to the size of the codebook and the number of
training samples on several widely used databases (15-Scenes, Caltech-256, PASCAL VOCO07, and SUN397). Experimental findings
firmly justify our theoretical analysis, which is expected to benefit both practical applications and future research.

Index Terms—Image classification, feature coding, bag-of-features

1 INTRODUCTION
1.1 Motivation

MAGE classification is to assign one or more category labels

to an image. It is one of the most fundamental problems
in computer vision and pattern recognition, and has a wide
range of applications, for example, video surveillance [1],
image and video retrieval [2], web content analysis [3],
human-computer interaction [4], and biometrics [5]. The
bag-of-features (BoF) [6], developed from the bag-of-words
model in document analysis [7], is probably the most
popular and effective image classification framework in the
recent literature. It has achieved the state-of-the-art perfor-
mance in several databases (e.g., 15-Scenes [8] and Caltech-
256 [9]) and competitions (e.g.,, PASCAL VOC [10] and
ImageNet [11]).

Generally, there are five basic steps in the BoF frame-
work used for image classification, as shown in Fig. 1. These
steps are, respectively:

1. Extract patches. With the images as the input, the
outputs of this step are image patches. This process
is implemented via sampling local areas of images,
usually in a dense (e.g., using fixed grids [12])
or sparse (e.g., using feature extractors [13], [14],
[15]) manner.
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2. Represent patches. Given image patches, the outputs
of this step are their feature descriptors (vectors).
This process is usually implemented via statistical
analysis over pixels of image patches. For example,
the popular scale-invariant feature transform (SIFT)
descriptor [16] describes a patch with the local
accumulation of the magnitude of pixel gradients in
each orientation, and finally generates a histogram
vector with 128 dimensions (16 subregions multi-
plied by eight orientations). Other widely used
descriptors include local binary pattern [17], histo-
gram of oriented gradients [18], and so on.
Extensive studies about feature descriptors can be
found in [19], [20].

3. Generate codewords. The inputs of this step are feature
descriptors extracted from all training images and
the outputs are codewords. For computational
efficiency, in real application, usually a subset of
descriptors is randomly sampled from all descriptors
as the input. The codewords are typically generated
by clustering (e.g., K-means [21]) over feature
descriptors or codeword learning in a supervised
[22], [23], [24] or an unsupervised [25], [26], [27]
manner. All codewords compose a codebook.

4. Encode features. Given feature descriptors and code-
words as the input, the output of this step is a coding
matrix. In this step, each feature descriptor activates
a number of codewords, and generates a coding
vector, whose length is equal to the number of
codewords. The difference of various coding algo-
rithms lies in how to activate the codewords, i.e.,
which codewords are activated and how large the
amplitudes of their responses are. All coding vectors
form a coding matrix.

5. Pool features. The input of this step is a coding matrix
and the output is a pooling vector for each image,
namely the final representation of an image. This step

Published by the IEEE Computer Society
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Fig. 1. The general pipeline of the BoF framework for image
classification.

is implemented via integrating all responses on each
codeword into one value. Classic pooling methods
include average pooling (i.e., preserving the average
response [6]) and MAX pooling, (i.e., preserving the
maximum response [25]). An in-depth analysis on
feature pooling can be found in [28], [29].

Of all the above five steps, feature coding is the core
component, which links feature extraction and feature
pooling, and greatly influences image classification in terms
of both accuracy and speed. Although many methods have
been presented to promote the development of feature
coding, there is still no work that comprehensively studies
this exciting field. Our work in this paper makes such a timely
survey, in which various coding methods are introduced,
their relations are exploited, and existing problems and open
directions are discussed. We believe that this work will
greatly benefit both beginners and practitioners in the field.

1.2 Taxonomy

For clarity, we group the existing coding strategies into five
major categories according to their motivations, as shown in
the right part of Fig. 2.

Global coding is generally designed to estimate the
probability density distribution (PDD) of features. It focuses
on the global description of all features rather than each
individual feature. There are mainly two kinds of strategies
in global coding;:

e Voting-based methods [6], [30] describe the distribu-
tion of features with a histogram, which carries the
occurrence information of codewords. Such a histo-
gram is usually constructed by hard quantization or
soft quantization.

e  Fisher coding-based methods [31], [32] estimate the
distribution of features with the Gaussian mixture
models (GMM), consisting of the weights, the means,
and the covariance matrix of multiple Gaussian
distributions, each of which reflects one pattern
of features.

Local coding is proposed to describe each individual
feature. Three kinds of local coding methods have been
developed:

e  Reconstruction-based methods [25], [26], [33] use a
small part of codewords to describe each feature via
solving a least-square-based optimization problem
with constraints on codewords.

e Local tangent-based methods [34], [35] derive an
exact description for each feature through approx-
imating the Lipschitz smooth manifold where
features are located.

Hard Votmg (HV)
V ti
Coding Fisher Kernel (FK)
Fisher Coding { Improved Fisher Kernel (IFK)
Sparse Coding (SC)
Local Coordinate Coding (LCC)

Local-constraint Linear Coding (LLC)
Local Tangent Coding (LTC)
Local Tangent { R
- Super Vector Coding (SVC)
Coding S I Salient Coding (SaC)
AlIENgy Group Salient Coding (GSC)

Fig. 2. A taxonomy of coding methods in image classification. Several
representatives are listed for each type of coding scheme.

Feature
Coding

e  Saliency-based methods [36], [37] encode each feature
by the saliency degree, which is calculated using the
ratio or the difference of the distances from a feature
to its nearby codewords.

It should be noted that the use of the concepts “global” and
“local” is to keep consistent with the motivations presented
in the original papers. Discussion on the above five kinds
of feature coding methods will be detailed in Section 2.

1.3 Difference from Previous Work

Our work is most related to Chatfiled et al. [38]. However,
there are several important differences:

1. The major concerns of two works are different. Their
work focuses on implementation details for experi-
mental comparison, while our work emphasizes
theoretical study, i.e., the motivations of coding
methods as well as their underlying relations. The
experimental part in our work is mainly for
justifying the theoretical analysis.

2. The criterions of categorizing coding methods are
different. Their work groups coding methods into two
categories according to their final representations:
1) expressing features as the combination of code-
words and 2) recording the difference between
features and codewords. We divide coding methods
into five typical categories based on their different
principles, which is more helpful for theoretical
analysis. For example, although improved Fisher
kernel (IFK) and super-vector coding (SVC) are
similar in the final representation, IFK estimates
global probability density distribution, and SVC,
derived from LCC, pursues exact description of
each feature.

3. The focuses of experimental evaluation are different.
Their work evaluates more on implementation
details, for example, sampling density, normaliza-
tion, flipping images, and kernels, mainly on the
VOCO07 database, while our work evaluates more on
coding algorithms, codebook sizes, numbers of
training samples, and databases (including the more
challenging Caltech256 and SUN397 databases).

1.4 Contributions

The major contributions of this paper are summarized
as follows:

e DProvide a survey on recent progress in feature
coding, including the motivations and mathematical
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representations of different categories of coding
methods. This part will be especially beneficial for
the beginners to get familiar with this research field.

e  Exploit the relations among different kinds of coding
methods, based on which we propose for the first
time a taxonomy and the corresponding evolution
map. This part provides an in-depth understanding
to this area.

e Evaluate several representative coding algorithms.
Some meaningful findings are obtained, which is
useful for practical applications.

e Summarize main problems and challenges of current
studies, and point out some open directions in future.

The rest of this paper is organized as follows: Section 2

provides a survey on various coding methods. Section 3
exploits the relations among different coding methods.
Section 4 empirically evaluates representative coding
algorithms on four databases. Finally, Section 5 concludes
the paper with discussions on future research.

2 CobIiINnGg METHODS

In this section, different kinds of coding methods are
discussed according to the proposed taxonomy depicted in
Fig. 2. Let X = [z1,22,...,2N] € RPN be N D-dimensional
features extracted from an image, B = [bi,bs,...,bn] €
IR”*M be a codebook with M codewords (typically obtained
by clustering over features), and V = [vy, vy, ..., vn] be the
corresponding representation of these N features. In feature
coding, each z is represented by the codebook B. This
process will generate responses on M codewords, consist-
ing of a coding vector v with M elements. For most coding
algorithms, only a part of codewords will be chosen to
represent a feature, and thus the coding vector v is usually
sparse, i.e., the responses are zeros on those codewords
which are not chosen.

2.1 Voting-Based Coding
In voting-based coding, the probability density distribution
of features is described by a histogram. Each bin of the
histogram reflects the occurrence frequency of features on a
codeword. This idea is intuitive and easy to implement.
However, it is quite rough to approximate the probability
density distribution with a histogram. Two kinds of voting-
based coding methods are introduced as follows:

Hard voting [6] assigns each feature to its closest
codeword and the coding representation of a feature x is

1, if i =argmin(||z — b|,)
v(i)—{ j T i=12, M. (1)

0, otherwise

Soft voting (SV) [30], [39] describes a feature by multiple
codewords using a kernel function (e.g., the Gaussian
function) of the distance between features and codewords.
The coding representation of a feature x is

_enlls-blife)
v(i) = — i =1,2,..., M, (2)
S exp(||z = bill,/0)

where Zfil exp(|| — by||3/0) is the normalization factor,
and ¢ is a smooth parameter. K = M in the original soft
voting [30]. In a recent paper [40], K is set to a smaller

number and accordingly [bi,...,bk] denote the closest K
codewords of x. This strategy is demonstrated to be more
discriminative in the classification tasks.

Soft voting possesses two advantages over hard voting.
First, it uses the kernel function of distance as the coding
representation instead of the simple one/zero response in
hard voting. Second, multiple codewords are employed for
coding rather than the hard assignment (i.e., only using the
closest codeword). These two changes are useful to enhance
the accuracy of probability density estimation.

2.2 Fisher Coding

Fisher coding [31] is inspired by the technique of Fisher
kernel, which describes a signal with a gradient vector
derived from its probability density function [41]. The
gradient vector indicates the direction in which parameters
should be adjusted to best fit the data. In the context of
image classification, the signal is an image and the gradient
vector is used for feature coding. After the original Fisher
coding [31] was proposed, there are some extended [32],
[42], [43] or simplified [44], [45], [46] versions of Fisher
coding. Here, we take the improved Fisher kernel [32] as an
example, who achieves the best performance to the best of
our knowledge.

In IFK, the probability density distribution of features is
described by the Gaussian mixture models. The parameters
of GMV, ie., 0,, = {wn, ftm, X}, denote the weight, the
mean vector, and the covariance matrix of the mth Gaussian
distribution, which can be generally estimated by the
expectation maximization (EM) algorithm [47].

Supposing that all features are independent each other,
an image can be expressed as the log likelihood of all
extracted features:

.
Mﬂ@:ZmM%W7 (3)

where p(z, |0) is the GMM-based probability density
function. The normalized gradient vector, called the Fisher
vector, is represented as

G=F, "G, (4)
where G = VyL(X |0) = [0L/du,dL/0%]" and F; is the

Fisher information matrix calculated as
Fy = Ex,x,(VoL(X, | )VoL(X, | 0)), (5)

where X, and &, denote two sets of features extracted from
two arbitrary images.

The Fisher information has an approximated close
solution according to [31], with which the coding vector
of a feature, i.e., the Fisher vector, can be represented as the

v(i) = [Gi;0x4),1=1,2,..., M,
Gui =%, (= i) [/,
Gsi=ril(w =¥ (@ = p) =1)/v/2w;, (6)

M
ri = wipi(x | 9)/ijpj(ac | 6).
=1

1. The derivative to w, according to [32], makes little contribution to the
performance. Thus, it is removed in IFK.
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TABLE 1
Three Constraint Functions in Different
Reconstruction-Based Coding Algorithms

Coding methods o(v)
M .
> iz [v(@)]
M .
>ims (@)l — bill3

S (w(i) exp(||z — bil2/0))?

Sparse coding [25]
LCC [26]
LLC [33]

2.3 BReconstruction-Based Coding

The core idea of reconstruction-based coding is to recon-
struct a feature with codewords via resolving a least-
square-based optimization problem with constraints on the
codewords. The unified representation of reconstruction-
based coding can be generally written as

argmin ||z — UBTH; + Ao (v)

M
s.t. Z v(i) =1,

where the least-square term ||z — UBTH§ pursues accurate
reconstruction, i.e., a feature can be described with a small
error, and the constraint term ¢(v) pursues discriminative
description, i.e., similar/different features obtain similar/
different representations. The reconstruction coefficients v
are used as the coding vector of feature x. The main
difference among various reconstruction-based coding
methods lies in the constraint term. Three constraint
functions are listed in Table 1 as examples, and their
meanings will be explained in Section 3.2.

Reconstruction-based coding has been very hot because
sparse coding was applied for image classification [25]. In
addition to the three methods listed in Table 1, there are
many other reconstruction-based coding methods in the
recent literature, such as Laplacian sparse coding [48],
mixture sparse coding [49], discriminative affine sparse
coding [50], nonnegative sparse coding [51], multilayer
group sparse coding [52], hierarchical sparse coding [53],
and weakly supervised sparse coding [54]. All of them
extend sparse coding by substituting the constraint term.
Due to the limited space, we do not introduce them one
by one here.

(7)

2.4 Local Tangent-Based Coding
Local tangent-based coding [34] assumes that all features
constitute a smooth manifold where codewords are also
located. Feature coding is then interpreted as manifold
approximation using the codewords. In this way, features
are not independent but closely related, expressed by a
Lipschitz smooth function. The main components in local
tangent-based coding are manifold approximation and
intrinsic dimensionality estimation, which are to be intro-
duced, respectively, as follows:

Denote f(z) as the Lipschitz smooth function of the
feature manifold, and it can be described by a high-order
representation:

|f(x) = (&) = 0.5(Vf(2) + V(@) (x - &)| < vlje - &5,
(8)

where  is a linear combination of several codewords, i.e.,
Z =73 cpwb, and v is the Lipschitz Hessian constant of
f(z). The feature manifold can be approximated as

F@) =Y (wf(b) + 053V () (x — b)) 9)

beB

with a third-order error O(||z — b||3). The derivation from
(8) to (9) is provided in the end of this section.

In (9), f(z) is described in the original feature space
because ~y,(z — b) has the same dimensionality as the feature
space. To obtain the intrinsic dimensionality of the feature
manifold, PCA is applied over the weighted training data
w(x; —b) to solve the projection matrix U = [u1(b), uz(b),
..., uc(b)], i.e., the local tangent directions of the manifold.
With the projection matrix, (9) is decomposed into

C
fla)=>" (% F0) +0.5> %V f(b) up(b) (2 — b)Tuk(b)).

beB k=1
(10)

In this way, the dimensionality of the feature representation
is reduced from D to C.

In local tangent-based coding, only a part of the
manifold representation is fed into a linear classifier. This
part is easy to be calculated and used as the representation
of feature coding:

(11)

where v, and u;(b) are calculated by applying LCC and
PCA, respectively. The rest part, i.e., f(b) and V F(0) up(b),
can be solved by the linear classifier.

Finally, we provide the derivation details from (8) to (9).
As f(z) is Lipschitz smooth, for all = € IR”:

v= ['W?Wb(x - b)Tuk(b)}beB,k:LQ ..... ok

f(@) = f(Z %b) = wfb), (12)
beB beB
0.5V f(z)" (z — %) = 0.5a (x - Z%b), (13)
beB
T
0.5Vf(&) (z — %) =05Vf (Z %b) (x - Zw)
beB beB (14)
=05 wVfb) wlz—b),
beB
vle = &5 =vllz =Y wblls = O(lz = bll3).  (15)
beB
Substitute (12) ~ (15) into (8) and obtain
‘f(x) -3 (%f(b) —05) VD) pla - b)) ‘

beB beB (].6)

< 0.50 (x - Z%b) +O(||lz —bl3).

beB
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The difference between x and ), 57, can be very small if
we choose z’s nearby codewords to calculate >, ;vb.
Therefore, (16) can be written as (9) with a third-order error

O([l — bll).

2.5 Saliency-Based Coding

The core idea of saliency-based coding [36] is that saliency
is one of the fundamental characteristics of feature coding
when combining with MAX pooling. In saliency-based
coding, a strong response on a codeword indicates relative
proximity (corresponding to saliency representation), which
means that this codeword, compared with all other code-
words, is much closer to a feature belonging to this
codeword. As a result, the codeword can independently
describe this feature without the help of other codewords.
Considering that only the strongest response is preserved in
the subsequent MAX pooling, relative proximity is more
stable than absolute proximity.

The original salient coding employs the difference
between the closest codeword and the other K — 1 closest
codewords to reflect saliency, and a feature is accordingly
represented as

P(x), ifi=argmin(||z — byll,)
v(i) = j
0, otherwise, (17)
K ~ ~
=Dl =bjll = llz = billy) /[l = b,
j=2
where 1(z) denotes the saliency degree and [by, by, . . ., by] is

the K closest codewords to z.

It is generally considered that saliency is inherently an
exclusive characteristic according to the definition of
relative proximity. That is, only the closest codeword is
closer to the feature than all other codewords. Therefore, in
the original saliency-based coding, hard assignment is used
(see (17)). However, hard assignment is a coarse method for
feature description. Very recently, Wu et al. [37] propose
group saliency-based coding (GSC) by introducing group
coding. Its idea is to calculate the saliency response of a
group of codewords, and the response is then fed back to all
the codewords in the group. The final coding result of a
feature on each codeword is the maximum of all responses
calculated according to different group sizes.

Let s/ denote the ith entry of the coding result obtained
with the group size k, 1/*(z) denote a function measuring
the group saliency degree, and g(z, k) denote the set of the &
closest codewords of x. In group saliency coding, a feature
is represented as

N 13 _
v(i) fm?x{si},kf 1,...,K,
SI-C _ ¢k($)a 7/f bl € g($,k’)
o 0, otherwise, (18)
K41—k } B
W)=Y o= beslly — llz = Billo,
=1

where K is the maximum group size.

Reconstruction
Based Coding

Saliency
Based Coding

Local Tangent
Based Coding

Voting
Based Coding

Fisher Coding

Fig. 3. An evolution map of feature coding.

3 THEORETICAL STUDY

In this section, we provide our understanding on the
connections among different kinds of coding algorithms
based on their characteristics introduced in Section 2.
According to the analysis to be given subsequently, the
evolution map of feature coding methods is illustrated in
Fig. 3, and each step of the evolutional relations is detailed in
the following sections, respectively.

3.1 From “Voting” to “Fisher Coding”

Both voting-based coding and Fisher coding aim to describe
the whole feature space. Their main difference is the way of
describing the probability density distribution of features.

As we analyzed previously, in voting-based coding, the
probability density distribution is described by a histogram.
Each bin of the histogram corresponds to the occurrence
information of a codeword. However, the original dimen-
sionality of the codeword representation is high, for
example, 128 for SIFT features. Using one value for a
codeword would ignore some useful information.

In Fisher coding, features are described by multiple high-
dimensional Gaussian distributions, each of which corre-
sponds to a codeword. Compared with histogram descrip-
tion, GMM contains much richer information. In particular,
voting-based coding can be approximated as a simplified
version of Fisher coding. We take soft voting as an example
for analysis. The probability representation of a feature
with GMM is

Z wmPm (@ | 0),

m=

(19)

T — Nm)TE;ll (z— Nm))

(27T)D/2|Em‘1/2

; (20)

where 60 = {w,,, tm, L} denote the weight, the mean
vector, and the covariance matrix of the mth Gaussian
distribution, and p,,(z | 0) reflects the probability that z
belongs to the mth Gaussian distribution.

Soft voting has only one prior parameter, ie., the
codewords B. The probability representation in soft voting
(see (2)), can be approximately rewritten as

p(z | B) (21)

me z | B

m=
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pm(z | B) = exp(||lz — brn”%/a)

exp (Wi(xd — bina)? / g>
= dlD_IleXP((SUd = bma)’/0)

D
~ Hpm,d(x | 9)7
d=1

where x4, by, 4, and py, 4(x | 6) denote the dth dimension of z,
by, and py,(z | 0), respectively.

With the above derivation, it is not hard to draw the
following conclusions about the relation between soft
voting and Fisher coding:

1. The product operation in (22) indicates that all
dimensionalities of the probability representation in
soft voting are independent of each other, which is a
strong assumption. In Fisher coding, the relations
among different dimensionalities are modeled by the
joint probability representation with GMM.

2. Fisher coding considers more prior knowledge in
probability representation. The weight vector w in
(19) reflects the prior occurrence frequency of
features on each Gaussian, which is ignored by soft
voting. The covariance matrix ¥ in (20) is degener-
ated into a constant value o in (22). This means to
force the distributions of features on all codewords
to be of the same variance, which is also an
unreasonable assumption.

Another important difference between Fisher coding
and soft voting is that Fisher coding adopts the derivative
of the probability density distribution of features (see (3)-
(6)), while soft voting only uses PDD itself for feature
coding. The use of the derivative is originated from the
technique of Fisher kernel [41], which describes a signal
with a gradient vector derived from its probability density
function. With the use of the derivative, the representation
of features can be accordingly adjusted to best approximate
data distribution.

Based on the above analysis, it is natural to predict that
Fisher coding would perform better than soft voting with
the same number of Gaussian distributions/codewords.

3.2 From “Voting” to “Reconstruction”

If we carefully observe the representation of one feature, it
is easy to find that reconstruction-based coding achieves
more exact description to each feature than voting-based
coding. To better understand the relation between voting-
based and reconstruction-based coding, we take hard
voting and sparse coding for comparison. Without loss of
generality, hard voting can be rewritten as

argmin ||z — vB”||
v

M (23)
st Jolly = 1, v(e) = 1,

where the [j-norm counts the number of nonzero entries in
a vector. Generally, the constraint ||v||, = 1 is considered to
be too strong, leading to a rough description to x. In sparse

coding, the /;-norm is adopted and integrated into the
objective function:

argmin [z — o872 + Aol

M
s.t. Zv(i) =1

With the [;-norm constraint, sparse coding achieves the
effect that similar features share a part of codewords.
Further studies (LCC [26]) found that the locality constraint
plays a more important role in increasing the probability of
such effect. The locality constraint is achieved by minimiz-
ing the euclidean distance between a feature and code-
words. To model this constraint, ||v||, used in sparse coding
is replaced with Zb|v(z)|||:r—b(z)|\§ In this way, LCC
focuses on features’ nearby codewords that are more likely
to be shared by similar features.

The computational cost of LCC is high because its
solution relies on iterative optimization. To address this
problem, LLC [33] adopts a new constraint function
S, (v(i) exp(||z — bill,/0))*. The main difference is that
|v(7)| is changed to differentiable v(i)?, so as to obtain an
analytical solution in encoding a feature:

(24)

v=10/1"7,
o= ((B—2z)(B—1x)" + Miag(Dis)) \ 1, (25
Dis = exp(||z — B|,/0).

The above idea is also presented in [25]. To further
enhance the coding speed, approximated LLC is proposed
in [33], wherein the constraint function is replaced by
using the K closest codewords, corresponding to the
following problem:

arg min ||z — UBTHE
v

K
s.t. Zv(z) =1,

where B is the K closest codewords of z. On the one hand,
since B is the K closest codewords, approximated LLC
achieves locality. On the other hand, as K is usually a much
smaller number compared to the number of codewords,
approximated LLC also obtains sparsity.

Further, we exploit the relation between hard voting and
approximated LLC. The coding representation of approxi-
mated LLC, i.e., (26), can be approximately rewritten as

(26)

arg min ||a: — ’UBTH;
M (27)
st |vll, = K, Zv(z’) =1.

This form is very similar to that of hard voting (23), which
demonstrates that hard voting can be considered as a special
case of approximated LLC, i.e., when K = 1. Based on the
above analysis, it is expected that reconstruction-based
coding should perform better than voting-based coding.
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Fig. 4. An illustration of the joint effect of reconstruction and MAX
pooling. (a) Least-square-based reconstruction. (b) Coding result after
MAX pooling. z; and z, are two features. b; ~ b3 are three codewords.
v and v, are the responses of z; on b, and b,. v{ and v}, are the
responses of x; on by and bs.

3.3 From “Reconstruction” to “Saliency”
Reconstruction-based coding adopts the least-square-based
optimization to generate feature description. The least-
square-based optimization is usually an underdetermined
system, in which the dimensionality of « is larger than the
number of the codewords used for reconstruction. There-
fore, it is almost inevitable for the least-square-based
optimization to induce deviations in reconstruction. In
spite of this, it still achieves surprisingly good performance
in some databases. The secret may lie in the salient
representation when combining with MAX pooling. Take
approximated LLC as an example. As each codeword may
be used multiple times in reconstructing features, it may
receive multiple responses. However, in the later MAX
pooling, only the maximum response is preserved. What is
the meaning of these maximum responses? We illustrate it
in Fig. 4.

Fig. 4a depicts the geometric explanation of reconstruc-
tion in a 2-dimensional feature space in the case of K = 2. In
approximated LLC, the reconstruction in (26) is an analog of
vector composition following the parallelogram law [55].
When a feature, for example, x4, is close to by and far away
from b3, approximated LLC produces a strong response v},
on by and a weak response v; on bs. When a feature, for
example, x4, is located in the middle of two codewords, for
example, b; and by, both v; and v, are relatively weak. For
the case with a larger K, the analysis is similar, i.e., using
the parallelogram law multiple times.

What is the underlying meaning of Fig. 4? When a
codeword obtains a strong response, i.e., it is much closer to
a feature compared with other codewords, this codeword
can independently describe the feature (salient representation).
This is the case of by, b3, and z, in Fig. 4a, where v, can
approximately represent z; without vj;. When all responses
in representing a feature are weak (unsalient representation),
all related codewords should be preserved to describe this
feature. This is the case of b;, by, and z;, where the response
on a single codeword cannot independently represent the
feature. In this case, the response is unstable because a weak
response may be suppressed in the subsequent MAX
pooling, for example, v, is suppressed by v/, (see Fig. 4b).
In a word, salient representation leads to stable description.

The least-square-based reconstruction can obtain salient
representation in a low-dimensional feature space, which is

Fig. 5. An example showing the deviation generated during least-
square-based reconstruction.

guaranteed by the parallelogram law. However, if K is
smaller than the dimensionality of the feature space,
features and codewords may not be in the same hyperplane,
and thus, exact reconstruction cannot be achieved by using
K codewords. Fig. 5 illustrates an example wherein b; and
b, in the 3-dimensional space cannot represent = by the
parallelogram law. The least-square-based optimization
uses b; and by to reconstruct z and accordingly the coding
response is the projection vector of z in the plane
determined by b; and b,. The distance between z and z' is
the deviation of reconstruction.

After recognizing the importance of salient representa-
tion and the problem of least-square-based reconstruction,
saliency-based coding [36] is proposed to directly extract
salient representation according to the difference between
the closest codeword and other K —1 codewords. The
underlying intuition is that the larger the difference, the
more salient the representation. The mathematical repre-
sentation of original saliency coding is listed in (17).
Further, group saliency coding is presented [37] that uses
the difference between the closest group of codewords and
other codewords to reflect saliency. The spirit of GSC is
similar to that of the original saliency coding, and the main
difference is that GSC considers saliency representation on
multiple codewords but not a single codeword, which
avoids the possible rough description induced by hard
assignment. The mathematical representation of group
saliency coding is listed in (18).

Compared with reconstruction-based coding, saliency-
based coding owes two advantages: 1) directly derived
from the definition of saliency without the underdeter-
mined problem in the least-square-based reconstruction;
and 2) easy to implement without iterative optimization
and, thus, performs much faster.

3.4 From “Reconstruction” to “Local Tangent”
Reconstruction-based coding employs least-square-based
optimization, which actually builds a local linear approx-
imation for every feature. However, this strategy, due to its
under-determined solution, will inevitably generate recon-
struction deviation, as illustrated in Fig. 5. Local tangent-
based coding is another way that also pursues exact
description to each feature. The main difference between
reconstruction-based coding and local tangent-based cod-
ing is the estimation to the feature manifold.

Take LCC as an example. Similar to (8), the feature
manifold in LCC, according to [34], can be expressed as
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beB beB beB
(28)
Accordingly, the manifold estimation in LCC is
flx) =Y i), (29)
beB

with a second-order error O(||z — b||3).

Comparing (29) and (9), it is clear to see that LCC uses a
linear combination and local tangent-based coding employs
a nonlinear quadratic function to approximate the feature
manifold. The approximation error decreases from O(||z —
b||3) in LCC to O(|z — b])3) in local tangent-based coding. In
other words, local tangent-based coding describes the
feature manifold more preciously [34].

From another viewpoint, local tangent-based coding can
be considered as a reconstruction without deviation. To
explain this idea, we first introduce super-vector coding
[35], a simplified version of local tangent-based coding. Its
core idea is simplifying (10) to

fla) = [0 (@) + 0.5V f(5" ()" (@ = b7 (2)),

where b* () is the closest codeword of z. Accordingly, (11)
is replaced with the so-called super-vector coding:

v= s (z = b(2))],

(30)

(31)

where s is a predefined parameter. Compared with the
original local tangent coding in (11), super-vector coding
makes two simplifications. First, it only uses the closest
codewords of a feature, and thus does not need to run LCC
to obtain the coefficient -, in (11). Second, the super vector
x — b*(x) is adopted to replace the local tangent vector (z —
b) uy,(b) in (11).

According to (31), the representation of each feature
in super-vector coding can be divided into two parts:
[v1;v2] = [s; (z — b*(x))], and a feature = can be represented as

x = b"(z) + vo. (32)

As b*(z) and vy have the same dimensionality as the feature
space, x can be reconstructed without deviation, which
supports our claim that super-vector coding is an enhanced
version of reconstruction-based coding.

3.5 Summary

As the final part of this section, we summarize the
characteristics of the five kinds of coding methods in Table 2
and explain them as follow.

Robustness is defined here as insensitiveness to unusual
features, for example, noisy features. Global coding pursues
to model the probability density distribution of features,
and thus, it is not easy to be influenced by a small number
of unusual features. In particular, Fisher coding uses GMM
for probability density estimation, which is more robust
than the histogram-based manner. Local coding aims to
describe each individual feature and, thus, is sensitive to
unusual features.

As the codebook size increases, local coding can describe
more patterns of features. Therefore, it has good adaptiveness

TABLE 2
Characteristics of Coding Methods

‘Robustness Adaptiveness Accuracy Independency

Voting v - — —
Fisher Coding vV — — _
Reconstruction — v v v
Saliency — v - v
Tangent — v Va4 v

to the increase of the codebook size. In contrast, in global
coding, there should be an optimal codebook size (corre-
sponding to the best division of the feature space) to
estimate the probability density distribution.

Reconstruction-based coding and local tangent-based
coding pursue exact description to each feature and, thus,
perform well in the accuracy of feature reconstruction. In
particular, SVC reconstructs a feature without deviation
and outperforms others in accuracy.

Independency means that a codeword can stably represent
a pattern of features. Local coding is designed to describe
each feature and, thus, performs better than global coding
in this aspect. Especially, saliency-based coding proposes
salient representation in which the preserved strong
response on each codeword can independently express a
feature without the help of other codewords.

4 EXPERIMENTAL STUDY

To test the performance of different kinds of coding
methods, an empirical study is conducted in this section.
First, we introduce used databases and experimental setup,
then choose five representative coding methods for ex-
tensive evaluation, followed with the result analysis.

4.1 Experimental Databases

Four databases are chosen for empirical evaluation, which
are, respectively:

e The 15-Scenes data set [8] is a typical database for
scene classification. It consists of 4,485 images
spread over 15 categories, each of which contains
200 to 400 images. We follow the experimental setup
of Lazebnik et al. [56] wherein 100 random images
per class are chosen as training samples and the rest
are used for testing.

e The Caltech-256 database [9] is a typical database for
object classification. It consists of 29,780 images
including 256 object categories plus a background
class. Each category contains at least 80 images. We
use the common experimental setting on this
database: For training, using different numbers of
images; for testing, randomly choosing at most
25 images per class.

e The PASCAL VOCO07 database [57] is one of the most
challenging databases for image classification with
9,963 images distributed in 20 classes of objects. All
images are obtained from Flickr with large varia-
tions in size, illumination, scale, viewpoint, defor-
mation, and clutter. The training and testing samples
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Fig. 6. Performance comparison on the 15-Scenes and the PASCAL VOCO7 databases.

have been well divided. PASCAL VOCO07 is the latest
one of the PASCAL VOC Challenge data sets with
the labels of the testing images released, and thus is
convenient for evaluation.

e The SUN397 database [58] is probably the largest
database for scene classification. It contains 108,754
images over 397 well-sampled categories. The
number of images varies across categories, but there
are at least 100 images per category. Ten subsets of
the data set have been chosen for evaluation, each of
which has 50 training images and 50 testing images
per class. We follow the common experimental
setting [58] on this database. In each experiment,
different number of images are used for training,
and all the 50 testing images are used for testing no
matter what size the training set is.

4.2 Experimental Setup

In all experiments, we adopt the 128-dimensional SIFT
feature [16] densely extracted from images on a grid with a
step of 4 pixels under three scales: 16 x 16,24 x 24, and
32 x 32, using the released code from VLFeat [59]. To
generate codewords, we use the standard K-means cluster-
ing algorithm [21] for all coding methods except for Fisher
coding, wherein the GMM is applied. After all features are
encoded, spatial pyramid matching (SPM) [56] is performed
following most previous work. That is, on the Caltech-256
database and the SUN397 database, SPM with levels of
[1x1,2x 2,4 x 4] is used. On the 15-Scenes database and
the PASCAL VOCO07 database, SPM with levels of
[1x1,2x2,3x1]is employed. All coding methods keep
the same pooling operations used in their original literature,
which is consistent with previous work. That is, soft voting
and Fisher coding are combined with average pooling,
super-vector coding is combined with weighted average
pooling, and others are combined with MAX pooling. For
normalization, we l;-normalizes the square root of the
responses. In training and testing, Lib-linear SVM [60] is
adopted, wherein the penalty coefficient is determined via
cross validation.

On 15-Scenes, Caltech-256, and SUN397, following most
previous work, we repeat the experiment 10 times and
report the average accuracy and the standard deviation. On
the VOCO07, the performance is measured with the mean
average precision (MAP), used in the PASCAL VOC
competition [10].

4.3 Selection of Coding Methods
According to Fig. 3, we choose five coding methods:

e Soft voting [61] is chosen as the representative of
voting-based coding methods. It adopts soft assign-
ment and can obtain more accurate probability
density estimation than hard voting.

e Improved Fisher Kernel [32] is the representative of
Fisher coding. It improves the original Fisher coding
[31] and achieves the best performance in [38].

e Local-constrained linear coding (LLC) [33] is chosen
as the representative of reconstruction-based coding
because it is much faster than most reconstruction-
based coding methods. Meanwhile, it performs better
than some classic methods such as sparse coding [25].

e Group saliency coding [37] is the newest study of
saliency-based coding, which avoids the problem of
hard assignment in the original salient coding [36].

e Super vector-coding [35] inherits the main charac-
teristics of the original local tangent-based coding
[34] and runs much faster.

4.4 Analysis of Results

The tendencies of performance curves on four databases
(Figs. 6, 7, and 8) are similar. We explain main experimental
findings in the following:

1. Experimental figures on four databases basically
justify the correctness of the proposed evolutional
directions: with the same codewords, Fisher coding
and reconstruction-based coding outperform voting-
based coding; Local tangent coding and saliency-
based coding perform better than reconstruction-
based coding. Overall, Fisher coding performs best.
We believe this is probably because robustness plays
the most important role among the four character-
istics shown in Table 2. This finding demonstrates
that it is possible that objects belonging to the same
class contain a number of different local features,
even on the same codeword. Fisher coding, due to
its excellent robustness, captures this characteristic
and, thus, achieves a proper tolerance to unusual
local features. To study the robustness of different
coding algorithms, we design an additional experi-
ment in which random noises in different propor-
tions are added to replace the original SIFT features.
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Fig. 7. Performance comparison on the Caltech-256 database. Please note that the maximal codebook size of SVC in this figure decreases to 256
because images on this database are much more than those on 15-Scenes and VOCO7.

The experimental results are illustrated in Fig. 9. It is
clear that the mean average precision of IFK
decreases most slowly, showing that it is more robust
to noises. This result also supports our claim that
robustness is an important factor that helps IFK
perform well.

Influence of the codebook size. The overall tendency
is: the more the codewords, the better the perfor-
mance. However, there is an overfitting effect when
the dimensionality of the coding representation
becomes very large, which leads to the plateau of
performance curves. For example, on the 15-Scenes
database, there are nearly no increases for LLC and
GSC when the codebook size arrives at 16,384.
For SV, there is even a slight decrease after
4,096. However, on the PASCAL VOC07 and the
Caltech-256 databases, the overfitting effect is not
obvious. This is possibly because these two data-
bases have relatively high tolerance to overfitting.
We believe that the performance will deteriorate if
we use a larger size of the codebook. To justify it, we
add an experiment with an extremely high dimen-
sionality on the PASCAL VOCO07 database, shown in
Fig. 10. The result justifies our prediction. The
performance of SV and LLC decreases after 65,536.
Influence of the number of training samples. The
experimental results on the Caltech-256 and SUN397

databases clearly show that the increase of training
samples consistently enhances the performance of all
coding methods.

4. The similar tendency in Figs. 6, 7, and 8 indicates
some useful guidelines in practical applications:

a. SV is a good choice for the case of high speed
and low memory cost;

b. IFK is suitable to pursue high classification
accuracy; and

c. GSC can be taken into account for the balance
between speed and accuracy.

Besides, we carefully compare our experimental results
with Chatfield et al. [38] experimental evaluation, which is
widely accepted and cited. However, for SV, they do not
test the case of using the linear kernel, and thus, we
compare our result of SV with that implemented by
Boureau et al. [29]:

e SV. The performance of SV with our implementa-
tion is a little better than that reported by Boureau
et al. [29]. For example, on the 15-Scenes database,
when the codebook size is 1,024, our result and
theirs are, respectively, 78.8 £ 0.4% and 75.6 &+ 0.5%
using the linear SVM. The difference is reasonable,
considering that our experiment adopts more denser
feature sampling rate (every 4 pixels) than theirs
(every 8 pixels).
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IFK. The performance of IFK implemented by us is a
little lower than that reported by Chatfield et al. [38].
For example, on the VOCO07 database, when the
codebook size is 256, our result and theirs are,
respectively, 61.2 and 61.69 percent. This is probably
caused by different implementations of GMM accord-
ing to our personal communication with Chatfield.

LLC. The performance of LLC implemented by us is
similar to that by Chatfield et al. [38]. We list both of
them in Table 3.
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GSC. We use the same implementation as the
original GSC [37]. Therefore, the experimental result
is the same as that of [37].

SVC. The performance of SVC implemented by us is
a little better than that by Chatfield et al. [38].
For example, on the VOC07 database, when the
codebook size is 1,024, our result and theirs are,
respectively, 59.7 and 58.16 percent. This may be
induced by different clustering results when generat-
ing codewords.
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Fig. 9. The influence of random noises on coding algorithms. The baseline algorithms are SV (4,096), IFK (256), LLC (4,096), GSC (4,096), and SVC
(256). The numbers in the parenthesis denote the size of the codebook.
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histogram. We only take SV and LLC for justification because this
experiment is very time and memory consuming.

5 CONCLUSION AND DISCUSSION

In this paper, we have discussed various coding methods,
including their motivations and mathematical representa-
tions. Moreover, we have analyzed their relations in theory,
and empirically evaluated their performance. The main
conclusions are listed as follows:

1. For global coding, Fisher coding is more reasonable
than voting-based coding. First, to estimate the
probability density distribution, the high-dimen-
sional GMM used in Fisher coding is more accurate
than the histogram used in voting-based coding.
Second, Fisher coding takes more prior knowledge
into account, for example, the weight and the variance
of clusters, and thus it contains richer information.

2. Reconstruction-based coding enhances hard voting
in two aspects. First, it uses a linear combination of
codewords to approximate features so that the
description error is reduced. Second, the constraint
on codewords in the objective function (Table 1)
leads to the advantage that similar/different features
obtain similar/different representations.

3. Saliency-based coding improves reconstruction-
based coding via jointly considering coding and
pooling. The saliency degree, i.e., the degree that
codewords can independently describe features, is a
key factor to obtain stable representation.

4. Local tangent-based coding aims to build the local
geometry of the feature manifold. The derived feature
description can be seen as a kind of feature recon-
struction without deviation, and thus, it performs
better than traditional reconstruction-based coding.

Finally, we would like to discuss some open directions.

Some of them are inspired by the connections among
coding methods. Here, we just give several examples:

1. The development from reconstruction-based coding
to saliency-based coding tells us that it is important
to design feature coding by considering the joint
effects of feature coding and pooling. Saliency-based
coding exploits the influence of MAX pooling to
feature coding. Along this direction, more kinds of

TABLE 3
Performance Comparison of Different Implementations
of LLC on VOCO07

#C/SR ~ 4000/SR3  10000/SR3  14000/SR3  25000/SR3
[38] 53.79% 56.01% 56.18% 57.27%
#C/SR  4096/SR4  8192/SR4  16384/SR4  32768/SR4
Ours 53.12% 55.55% 57.43% 58.27%

“UC” is the number of codewords and “SR” is the sampling rate.

pooling, for example, learning-based pooling strate-
gies proposed recently [62], [63], could be jointly
considered in the design of feature coding.

2. Voting-based coding estimates the probability den-
sity distribution of features using a histogram, while
Fisher coding employs more powerful Gaussian
mixture models, which achieves much better per-
formance. This relation reveals that accurate prob-
ability density estimation of features is critical to
enhance the effectiveness of feature coding. Mean-
while, the development from LCC to local tangent
coding tells us that the high-order Lipschitz smooth
function is available to describe the feature manifold
more accurately. Inspired by these theoretical con-
nections, it may be potential to borrow the idea of
high-order manifold approximation, as a kind of
nonparameter model, to further improve probability
density estimation for feature coding.

3. The relations among codewords in feature coding
are not explicitly revealed. Here, “explicitly” indi-
cates exploiting the prior relations among code-
words. Codebook graph [64] is such an attempt,
wherein an edge of the graph indicates that two
codewords are related. However, the relations
among codewords are heuristic in [64]. It is potential
to follow this direction for an in-depth study.

4. Most current coding methods focus on the feature
space, i.e., the appearance information of features.
However, their spatial information is also important,
which may be useful to distinguish images of
different categories and group similar ones. Very
recently, spatially regularized coding, proposed by
Shabou and Borgne [65], embeds the spatial distance
of features into the constraint term of LLC, increas-
ing the classification accuracy. We believe that
spatial modeling with various coding methods will
attract much attention in future.
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