
Auto-encoder Based Data Clustering

Chunfeng Song1, Feng Liu2, Yongzhen Huang1, Liang Wang1, and Tieniu Tan1

1 National Laboratory of Pattern Recognition (NLPR),
Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China

2 School of Automation, Southeast University, Nanjing, 210096, China

Abstract. Linear or non-linear data transformations are widely used
processing techniques in clustering. Usually, they are beneficial to en-
hancing data representation. However, if data have a complex structure,
these techniques would be unsatisfying for clustering. In this paper, based
on the auto-encoder network, which can learn a highly non-linear map-
ping function, we propose a new clustering method. Via simultaneously
considering data reconstruction and compactness, our method can obtain
stable and effective clustering. Experiments on three databases show that
the proposed clustering model achieves excellent performance in terms
of both accuracy and normalized mutual information.

Keywords: Clustering, Auto-encoder, Non-linear transformation.

1 Introduction

Data clustering [4] is a basic problem in pattern recognition, whose goal is group-
ing similar data into the same cluster. It attracts much attention and various
clustering methods have been presented, most of which either deal with the
original data, e.g., K-means [10], its linear transformation, e.g., spectral cluster-
ing [7], or its simple non-linear transformation, e.g., kernel K-means [2]. However,
if original data are not well distributed due to large intra-variance as shown in
the left part of Figure 1, it would be difficult for traditional clustering algorithms
to achieve satisfying performance.

To address the above problem, we attempt to map original data space to a
new space which is more suitable for clustering. The auto-encoder network [1]
is a good candidate to handle this problem. It provides a non-linear mapping
function by iteratively learning the encoder and the decoder. The encoder is ac-
tually the non-linear mapping function, and the decoder demands accurate data
reconstruction from the representation generated by the encoder. This process
is iterative, which guarantees that the mapping function is stable and effective
to represent the original data. Different from kernel K-means [2], which also in-
troduces non-linear transformations with fixed kernel functions, the non-linear
function in auto-encoder is learned by optimizing an objective function.

The auto-encoder network is originally designed for data representation, and
it aims to minimize the reconstruction error. However, to the best of our knowl-
edge, though widely used, the auto-encoder network has not been utilized for

J. Ruiz-Shulcloper and G. Sanniti di Baja (Eds.): CIARP 2013, Part I, LNCS 8258, pp. 117–124, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

118 C. Song et al.

Non-linear
 Mapping

Fig. 1. Left: Original distribution of data. Due to large intra-variance, it is difficult
to classify them correctly. Right: By applying a non-linear transformation, the data
become compact with respect to their corresponding cluster centers in the new space.

clustering tasks. To make it suitable for clustering, we propose a new objective
function embedded into the auto-encoder model. It contains two parts: the re-
construction error and the distance between data and their corresponding cluster
centers in the new space. During optimization, data representation and clustering
centers are updated iteratively, from which a stable performance of clustering is
achieved and the new representation is more compact with respect to the cluster
centers. The right part of Figure 1 illustrates such an example. To evaluate the
effectiveness of this model, we conduct a series of experiments in three widely
used databases for clustering. The experimental results show that our method
performs much better than traditional clustering algorithms.

The rest of the paper is organized as follows: firstly we propose our method
in Section 2, then experimental settings and results are provided in Section 3.
Finally, Section 4 concludes the paper and discusses future work.

2 Proposed Model

In this section, we explain the proposed clustering model in details. As shown
in Figure 2, the data layer (e.g., the pixel representation) of an image is firstly
mapped to the code layer, which is then used to reconstruct the data layer.
The objective is minimizing the reconstruction error as well as the distance
between data points and corresponding clusters in the code layer. This process
is implemented via a four-layer auto-encoder network, in which a non-linear
mapping is resolved to enhance data representation in the data layer. For clarity,
in the next subsections, we firstly introduce the auto-encoder network, and then
explain how to use it for clustering.

2.1 Auto-encoders

Without loss of generality, we take an one-layer auto-encoder network as an
example. It consists of an encoder and a decoder. The encoder maps an input xi

to its hidden representation hi. The mapping function is usually non-linear and
the following is a common form:

hi = f(xi) =
1

1 + exp(−(W1xi + b1))
, (1)

where W1 is the encoding weight, b1 is the corresponding bias vector.

Auto-encoder Based Data Clustering 119

•••

•••

iteration=1

iteration=t1

iteration=t2

Restrains
added 1000

250

50

1000

250

50

w1

w2

w3

w4

w5

w6

w7

w8

f(x)

g(H)

H

X’

X

code layer Feature distribution

Basic Auto-encoder Clustering

10

Decoder

Encoder

Fig. 2. Framework of the proposed method

The decoder seeks to reconstruct the input xi from its hidden representation
hi. The transformation function has a similar formulation:

x′
i = g(hi) =

1

1 + exp(−(W2hi + b2))
, (2)

where W2, b2 are the decoding weight and the decoding bias vector respectively.
The auto-encoder model aims to learn a useful hidden representation by mini-
mizing the reconstruction error. Thus, given N training samples, the parameters
W1, W2, b1 and b2 can be resolved by the following optimization problem:

min
1

N

N∑

i=1

‖xi − x′
i‖2. (3)

Generally, an auto-encoder network is constructed by stacking multiple one-
layer auto-encoders. That is, the hidden representation of the previous one-layer
auto-encoder is fed as the input of the next one. For more details of the auto-
encoder network and its optimization, readers are referred to [1].

2.2 Clustering Based on Auto-encoder

Auto-encoder is a powerful model to train a mapping function, which ensures the
minimum reconstruction error from the code layer to the data layer. Usually, the
code layer has less dimensionality than the data layer. Therefore, auto-encoder
can learn an effective representation in a low dimensional space, and it can
be considered as a non-linear mapping model, performing much better than
PCA [3]. However, auto-encoder contributes little to clustering because it does
not pursue that similar input data obtain the same representations in the code

120 C. Song et al.

layer, which is the nature of clustering. To solve this problem, we propose a new
objective function and embed it into the auto-encoder model:

min
W,b

1

N

N∑

i=1

‖xi − x′
i‖2 − λ ·

N∑

i=1

‖f t(xi)− c∗i ‖2 (4)

c∗i = argmin
ct−1
j

‖f t(xi)− ct−1
j ‖2, (5)

where N is the number of samples in the dataset; f t(·) is the non-linear mapping
function at the tth iteration; ct−1

j is the jth cluster center computed at the (t−1)th

iteration1; and c∗i is the closest cluster center of the ith sample in the code layer.
This objective ensures that the data representations in the code layer are close
to their corresponding cluster centers, and meanwhile the reconstruction error
is still under control, which is important to obtain stable non-linear mapping.

Two components need to be optimized: the mapping function f(·) and the
cluster centers c. To solve this problem, an alternate optimization method is
proposed, which firstly optimizes f(·) while keeps c fixed, and then updates the
cluster center:

ctj =

∑
xi∈Ct−1

j
f t(xi)

|Ct−1
j | , (6)

where Ct−1
j is the set of samples belonging to the jth cluster at the (t − 1)th

iteration and |Cj | is the number of samples in this cluster. The sample assignment
computed in the last iteration is used to update the cluster centers of the current
iteration. Note that sample assignment at the first iteration C0 is initialized
randomly. For clarity, we conclude our method in Algorithm 1.

Algorithm 1. Auto-encoder based data clustering algorithm

1: Input: Dataset X , the number of clusters K, hyper-parameter λ,
the maximum number of iterations T .

2: Initialize sample assignment C0 randomly.
3: Set t to 1.
4: repeat
5: Update the mapping network by minimizing Eqn. (4) with sto-

chastic gradient descent for one epoch.
6: Update cluster center ct via Eqn. (6).
7: Partition X into K clusters and update the sample assignment

Ct via Eqn. (5).
8: t = t+ 1.
9: until t > T

10: Output: Final sample assignment C.

1 We use stochastic gradient descent (SGD) [5] to optimize the parameters of auto-
encoder.

Auto-encoder Based Data Clustering 121

3 Experiments

3.1 Experimental Setups

Database. All algorithms are tested on 3 databases: MNIST2, USPS3 and
YaleB4. They are widely used for evaluating clustering algorithms.

1. MNIST contains 60,000 handwritten digits images (0∼9) with the resolu-
tion of 28× 28.

2. USPS consists of 4,649 handwritten digits images (0∼9) with the resolution
of 16× 16.

3. YaleB is composed of 5,850 faces image over ten categories, and each image
has 1200 pixels.

Parameters. Our clustering model is based on a four-layers auto-encoder net-
work with the structure of 1000-250-50-10. The parameter λ in Eqn. (4) is set by
cross validation. That is 0.1 on MNIST, 0.6 on USPS and YaleB. The weights W
in the auto-encoder network are initialized via a standard restricted Boltzmann
machine (RBM) pre-training [3].

Baseline Algorithms. To demonstrate the effectiveness of our method, we
compare our method with three classic and widely used clustering algorithms:
K-means [10], spectral clustering [7] and N-cut [9].

Evaluation Criterion. Two metrics are used to evaluate experimental results
explained as follows.

1. Accuracy (ACC) [11]. Given an image xi, let ci be the resolved cluster label

and ri be the ground truth label. ACC is defined as
∑N

i=1 δ(ri,map(ci))/N ,
where N is the number of instances in the dataset and δ(x, y) is the delta
function that equals one if x = y and zero otherwise. Map(ci) is the function
that maps each cluster label ci to the equivalent label from the datasets. The
best mapping can be found by using the Kuhn-Munkres algorithm [8].

2. Normalized mutual information (NMI) [6]. Let R denote the label ob-
tained from the ground truth and C be the label obtained by clustering. The
NMI is defined as MI(R,C)/max(H(R), H(C)), where H(X) is the entropies
of X , and MI(X ,Y) is the mutual information of X and Y .

3.2 Quantitative Results

In this subsection, we firstly evaluate the influence of the iteration number in our
algorithm. Figure 3 shows the change of NMI and ACC as the iteration number
increases on three databases.

It can be found that the performance is enhanced fast in the first ten iterations,
which demonstrates that our method is effective and efficient. After dozens of

2 http://yann.lecun.com/exdb/mnist/
3 http://www.gaussianprocess.org/gpml/data/
4 http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html

http://yann.lecun.com/exdb/mnist/
http://www.gaussianprocess.org/gpml/data/
http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html

122 C. Song et al.

10 20 30 40 50 60
0.4

0.5

0.6

0.7

0.8

0.9

YaleB

iteration

accuracy
NMI

10 20 30 40 50 60
0.35

0.45

0.55

0.65

0.75

MNIST

iteration

accuracy
NMI

10 20 30 40 50 60
0.3

0.4

0.5

0.6

0.7

USPS

iteration

accuracy
NMI

Fig. 3. Influence of the iteration number on three databases

Table 1. Performance comparison of clustering algorithms on three databases

Datasets MNIST USPS YaleB
Criterion NMI ACC NMI ACC NMI ACC
K-means 0.494 0.535 0.615 0.674 0.866 0.793
Spectral 0.482 0.556 0.662 0.693 0.881 0.851
N-cut 0.507 0.543 0.657 0.696 0.883 0.821
Proposed 0.669 0.760 0.651 0.715 0.923 0.902

iteration, e.g., 40∼60, both NMI and ACC become very stable. Thus, in the rest
of experiments, we report the results after 50 iterations. The performances of
the different methods on three datasets are shown in Table 1. Apparently that
our method is better than or at least comparable to their best cases.

3.3 Visualization

In this subsection, the visualized results on MNIST are shown to provide an in-
depth analysis. We draw in Figure 4 the distribution of ten categories of digits
obtained by our method. Most of histograms in Figure 4 are single-peak distri-
butions, demonstrating the compactness of data representation. Admittedly, the
cases of digits 4 and 9 are not so good. We will discuss possible solutions to this
problem in Section 4. The small digital images in subfigures are the reconstructed
results of cluster centers in the code layer.

For comparison, we also show the average data representations over all clusters
by K-means in Figure 5. The result is much worse, and can be easily understood
with the motivation of our method. Generally, K-means uses a similar iteration
procedure as ours in Algorithm 1 except that it is performed in the original
pixel space. That is, the iteration of K-means is performed in the data layer,
whereas ours in the code layer, which is mapped from the data layer with a
highly non-linear function, learned by exploiting the hidden structure of data
with the auto-encoder network.

3.4 Difference of Spaces

In this subsection, we analyze the difference of three spaces, i.e., the original data
space, the space learned via non-linear mapping with original auto-encoder, and

Auto-encoder Based Data Clustering 123

0 1 2 3 4 5 6 7 8 9
0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 6 7 8 9
0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 6 7 8 9
0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 6 7 8 9
0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 6 7 8 9
0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 6 7 8 9
0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 6 7 8 9
0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 6 7 8 9
0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 6 7 8 9
0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 6 7 8 9
0

1000

2000

3000

4000

5000

6000

Fig. 4. Distribution of data over ten clusters and the visualized images of cluster centers
after reconstruction with the learned decoder

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Fig. 5. Distribution of digits over 10 classes and the visualized images of 10 cluster
centers generated by K-means

NMI ACC
Original 0.53 0.49
Auto-encoder 0.66 0.63
Proposed 0.77 0.69

0.4

0.5

0.6

0.7

0.8

0.77 0.69

Fig. 6. Performance comparison in three different spaces

the one learned by our method. Correspondingly, we apply K-means clustering
in these spaces. Their clustering results are shown in Figure 6. Obviously, the
clustering performance in the space of auto-encoder is much better than the one
in the original space, and much worse than the one proposed by us. This result
justifies two viewpoints: 1) Non-linear mapping by auto-encoder can greatly
improve the representation of data for clustering; 2) Our proposed objective
function, defined in Eqn. (4)∼(6), is effective to further enhance clustering due
to the design of increasing data compactness as analyzed in Section 2.2.

124 C. Song et al.

4 Conclusions

In this paper, we have proposed a new clustering method based on the auto-
encoder network. By well designing the constraint of the distance between data
and cluster centers, we obtain a stable and compact representation, which is more
suitable for clustering. To the best of our knowledge, this is the first attempt
to develop auto-encode for clustering. As this deep architecture can learn a
powerful non-linear mapping, the data can be well partitioned in the transformed
space. The experimental results have also demonstrated the effectiveness of the
proposed model. However, as is shown in Figure 4, some data are still mixed. This
problem might be resolved by maximizing the difference among cluster centers
in the code layer. Besides, a probability-based model in assigning data to their
corresponding cluster centers may be a potential direction in future work, which
can decrease the possibility of local optimal solution.

Acknowledgement. This work was jointly supported by National Basic Re-
search Program of China (2012CB316300), National Natural Science Foundation
of China (61175003, 61135002, 61203252), Tsinghua National Laboratory for In-
formation Science and Technology Cross-discipline Foundation, and Hundred
Talents Program of CAS.

References

1. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new
perspectives. arXiv preprint arXiv:1206.5538 (2012)

2. Dhillon, I.S., Guan, Y., Kulis, B.: Kernel k-means: spectral clustering and normal-
ized cuts. In: ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (2004)

3. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neu-
ral networks. Science 313(5786) (2006)

4. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing
Surveys 31(3), 264–323 (1999)

5. LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient backProp. In: Mon-
tavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade,
2nd edn. LNCS, vol. 7700, pp. 9–48. Springer, Heidelberg (2012)

6. Li, Z., Yang, Y., Liu, J., Zhou, X., Lu, H.: Unsupervised feature selection using
nonnegative spectral analysis. In: AAAI Conference on Artificial Intelligence (2012)

7. Ng, A.Y., Jordan, M.I., Weiss, Y., et al.: On spectral clustering: Analysis and an
algorithm. Advances in Neural Information Processing Systems 2, 849–856 (2002)

8. Plummer, M., Lovász, L.: Matching theory, vol. 121. North Holland (1986)
9. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on

Pattern Analysis and Machine Intelligence 22(8) (2000)
10. Wagstaff, K., Cardie, C., Rogers, S., Schroedl, S.: Constrained k-means clustering

with background knowledge. In: International Conference on Machine Learning,
pp. 577–584 (2001)

11. Xu, W., Liu, X., Gong, Y.: Document clustering based on non-negative matrix
factorization. In: ACM SIGIR Conference on Research and Development in Infor-
maion Retrieval (2003)

	Auto-encoder Based Data Clustering
	Introduction
	Proposed Model
	Auto-encoders
	Clustering Based on Auto-encoder

	Experiments
	Experimental Setups
	Quantitative Results
	Visualization
	Difference of Spaces

	Conclusions

