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Abstract—Recently there has been increasing interest in deep
neural network due to its powerful representability in several
successful applications such as speech recognition and image
classification. In this paper, we propose a general nonlinear
embedding framework based on deep neural network which can
be utilized to implement a family of dimensionality reduction
algorithms. The objective function of our framework consists
of two terms: 1) an embedding term transforms the input to
a low-dimensional representation with a multilayer network;
and 2) a regularization term which computes the reconstruction
error of the original input by unrolling the multilayer network
to a deep autoencoder. We adopt a layer-by-layer pretraining
procedure to obtain good initial weights for the network, and then
minimize the objective function by backpropagating derivatives
of the two terms. To evaluate the proposed framework, we
perform face recognition and digit classification experiments. The
experiments demonstrate that the proposed framework achieves
better results than the state-of-the-art algorithms. The success of
our framework further verifies deep neural network’s advantages
in representation learning.

I. INTRODUCTION

In real-world applications, it is very common that the
data to be analyzed usually has a high dimensionality which
leads to the well-known curse of dimensionality in statistical
pattern recognition. For analyzing such data efficiently, various
dimensionality reduction algorithms—supervised or unsuper-
vised; originating from statistics or geometry theory—have
been proposed to uncover the underlying structure of high-
dimensional data in low-dimensional spaces ([1], [2], [3]).
These techniques have played a very important role in many
tasks, such as pattern classification, information visualization
and storage of the high-dimensional data ([4], [1], [5]).

However, the problem of “out-of-sample” is a typical
limitation commonly existing in previous methods, such as
ISOMAP [2], LLE [4] and Laplacian Eigenmap (LE) [6],
which can not handle the samples out of the training data well.
To solve the out-of-sample problem, some researchers adopt
either a linear transform for the linear embedding, such as
Locality Preserving Projection (LPP) [1] and Neighborhood
Preserving Embedding (NPE) [7], or a kernel trick for the
nonlinear embedding, such as kernel PCA [8]. When the high-
dimensional data is very complex, linear projections fails to
capture the intrinsic manifold of the data due to its limited
representability, while kernel-based methods usually need rich
experience to choose the kernel function or have to enumerate
all kernel functions.

Recently, deep neural network has attracted much atten-
tion again since an efficient layer-wise unsupervised learning
strategy is proposed to pretrain this kind of deep architec-
tures [5]. It has shown powerful representability and achieved
great successes in several fields, such as image classification
[9]. Given the advantages mentioned above, a special neural
network, called deep autoencoder, has been used to learn low-
dimensional representations [5], and a deep neural network for
preserving the class neighborhood structure has been proposed
in [10].

In this paper, we propose a general nonlinear embedding
framework based on deep neural network, which is called
Deep Neural network Embedding (DNE). Specifically, DNE
utilizes deep neural network to learn a nonlinear embedding
from a high-dimensional data space to a low-dimensional
feature space. The framework aims to minimize two terms:
1) an embedding term computes the objective function of
any dimensionality reduction algorithm, by transforming the
input to a low-dimensional representation with a multilayer
neural network, and preserving the statistical or geometrical
properties of the input; and 2) a regularization term com-
putes the reconstruction error of the input by unrolling the
multilayer neural network into a deep autoencoder. When
a linear activation is used, the regularization term actually
imposes an orthogonal constraint on the weight vectors of the
network. Similar to [5], considering two adjacent layers as
a Restricted Boltzmann Machine, we pretrain the multilayer
neural network in a layer-by-layer way. Finally, we minimize
the two terms of this framework through backpropagating their
derivatives. Within this framework, we implement a family of
dimensionality reduction algorithms and achieve better results
than the state-of-the-art algorithms.

Several aspects of DNE should be pointed out here:

1) DNE solves the problem of “out-of-sample” through
a highly nonlinear transformation.

2) DNE can be applied to any existing dimensionality
reduction algorithm as long as it has an explicit
objective function.

3) DNE is a flexible multilayer neural network which
can handle complex datasets through changing the
number of the network layers and the nodes of each
layer.

The rest of the paper is organized as follows. In Section
II, we review related work to the proposed DNE. In Section
III, we introduce the formulation of DNE and develop several



dimensionality reduction algorithms under the framework of
DNE. The experimental results are shown in Section IV. We
conclude the paper in Section V.

II. RELATED WORK

Principal Component Analysis (PCA) [11] is one of
the most popular linear dimensionality reduction techniques,
which finds projection directions that keep the maximal vari-
ance of the original data. Linear Discriminant Analysis (LDA)
[12], as a well known supervised technique, uses class labels
to find a linear subspace which is optimal for discrimination.
To overcome the limitations of LDA, Marginal Fisher Analysis
(MFA) [3] is proposed to characterize the intraclass compact-
ness and interclass separability. Recently, numerous nonlinear
methods have been proposed to handle a large amount of
complex nonlinear data in real world. ISOMAP [2] is proposed
to preserve the pairwise geodesic distance by taking into
account the distribution of the neighboring data points. The
methods mentioned above are all considered globally, which
are sensitive to outliers. Locally Linear Embedding (LLE) [4]
first considers to fulfill the task of dimensionality reduction
by preserving the local property of the data. In LLE, each
sample is reconstructed as a linear combination of its nearest
neighbors, which is preserved in the projected space. Laplacian
Eigenmaps (LE) [6] weights local pairwise distance in the
projected space using the corresponding pairwise distance in
the high-dimensional data space, to retain the local struc-
ture of each sample. Although these nonlinear local methods
can capture the intrinsic structure of high dimensional data
well, they have a common weakness that the extension to
out-of-sample examples needs to recompute all the samples.
Neighborhood Preserving Embedding (NPE) [7] and Locality
Preserving Projection (LPP) [1] as the linear approximations
to LLE and LE are proposed to handle the out-of-sample
problem, respectively.

Since the resurgence of deep neural network in 2006,
several studies have been conducted to use deep neural network
for dimensionality reduction. Deep autoencoder (DAE) [5]
minimizes the reconstruction error of the original input to ob-
tain a low-dimensional representation, which exactly provides
a nonlinear extension of PCA. Through extending DAE to the
multimodal field, shared representations are extracted for both
image and text in [9]. By adding noise to the highest hidden
layer of DAE, the binary codes have been learned for the
input, which are used for efficient information retrieval [13].
The most similar work to our DNE is the nonlinear extension
of neighborhood component analysis (NCA) [14][10], which
uses a deep neural network as the transformation function and
preserves the class neighborhood structure by exploiting the
class label information. It should be noted that our DNE serves
as a general platform to implement both unsupervised and su-
pervised dimensionality reduction algorithms while nonlinear
NCA only implements a supervised algorithm. Additionally,
we utilize a regularization term [15] to avoid trivial solutions.

III. DNE FOR DIMENSIONALITY REDUCTION

The existing linear or nonlinear dimensionality reduction
algorithms have proposed various objective functions from
the viewpoints of preserving the statistical or geometrical
properties of the input. However, these methods generally lack
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Fig. 1. The proposed Deep Neural network Embedding (DNE) framework.
{W1,W2,W3} are the weights of the network, the bottom face images are
the high-dimensional inputs, the top layers with 100 nodes are the desired low-
dimensional representations and the number in each middle layer represents the
number of learned features. ”Property Preservation Analysis” aims to preserve
various properties of the data by imposing constraints on the learned low-
dimensional representation space.

a powerful transformation function. As we know, deep neural
network can approximate arbitrarily complex linear or nonlin-
ear functions, which is a good choice to transform complex
high-dimensional data into low-dimensional representations.
Based on the above considerations, we propose Deep Neural
network Embedding (DNE) which utilizes deep neural network
for nonlinear embedding. Furthermore, inspired by traditional
PCA, LDA, ISOMAP, LE, LLE and MFA, we employ DNE
as a general platform to implement several corresponding
algorithms for dimensionality reduction.

A. The Formulation of DNE

The proposed DNE consists of two terms: an embedding
term which preserves the statistical or geometrical properties
of the data in the low-dimensional space, and a regularization
term which minimizes the reconstruction error of the original
input. In this section, we first consider a deep neural network
as a multilayer encoder to obtain the low-dimensional repre-
sentations of the input data, and define an embedding term
with these representations. Then by unrolling the multilayer
encoder, we obtain a deep autoencoder with a symmetric
multilayer decoder, and define a regularization term with
the reconstruction error from this autoencoder. Finally, we
combine the embedding term and the regularization term as
a general objective function for our DNE.

Embedding term: Taking a four-layer neural network in
Fig. 1 for example as a multilayer encoder, which contains an
input layer and three hidden layers. The input layer denoted
as face images represents a high-dimensional input, the third
hidden layer with 100 nodes represents the desired 100-
dimensional feature representation and the number in each
middle layer is the number of learned features.

Let X = {xi : xi ∈ Rn×1}i=1,2,···,N denote the set of
input data, and W = {Wi}i=1,2,3 for the weights of the
encoder network. The multilayer encoder defines a mapping
f(·|W ) : Rn×1 → Rd×1(d < n) which transforms a high-
dimensional input x to a low-dimensional representation f(x):



f(x) = WT
3 h(WT

2 h(WT
1 x)) (1)

where h(x) is a sigmoid function 1/(1 + e−x). Note that we
omit all the bias terms for simplicity.

Utilizing the low-dimensional representations of the in-
put, we define an embedding term as L(X, f(·|W )). The
embedding term imposes constraints on the low-dimensional
representation space f(X) to preserve the statistical or geo-
metrical properties of the data. Various constraints have been
formulated into the objective functions in previous dimen-
sionality reduction algorithms. Therefore, inspired by these
objective functions, the embedding term can implement a
family of dimensionality reduction algorithms. For example,
the embedding term L can be defined as the objective function
of LE to preserve the local structure of the data space [6]:

L =
∑
ij

e−
‖xi−xj‖2

t ‖f(xi)− f(xj)‖2 (2)

where f(xi) and f(xj) obtained from the encoder are re-
spectively the low-dimensional representations of xi and xj ,
e−‖xi−xj‖2/t is the weight computed in the data space, which
penalizes the distance between xi and xj in the projected
space, and t is a tuning parameter.

Regularization term: Unrolling the four-layer encoder
network, we obtain a deep autoencoder with a symmetric mul-
tilayer decoder. The multilayer decoder also defines a mapping
g(·|WT ) : Rd×1 → Rn×1(d < n) which reconstructs the
original input from the low-dimensional representation f(x).
When using binary-valued data as the input, the reconstructed
output g(x) is

g(x) = h(WT
1 h(WT

2 h(WT
3 f(x)))) (3)

When using real-valued data as the input, the reconstructed
output g(x) is

g(x) = WT
1 h(WT

2 h(WT
3 f(x))) (4)

Similar to previous methods [3] [1] which usually exploit
a constraint to avoid a trivial solution, such as an orthogonal
constraint WWT = I , we introduce a regularization term
denoted as E(X, g(·|WT )) which computes the reconstruction
error of the network E as follows:

E = ‖g(f(X))−X‖2 (5)

When considering a two-layer encoder and h(x) as the
identity, the proposed regularization term exactly imposes an
orthogonal constraint on the rows of the weight matrix W [15].
To illustrate this, we rewrite Eqn 5 as follows:

E =
∥∥WWTX −X

∥∥2
= tr

[
(WWT − I)

T
CX(WWT − I)

]
= tr

∥∥(WWT − I)EXD
1/2
∥∥2
F

(6)

where CX is the covariance matrix of the input X , the columns
of EX are eigenvectors of CX , D is a diagonal matrix of
eigenvalues of CX , and I is the identity matrix. As we can

TABLE I. THE SIMILARITY MATRIXES OF THE DEVELOPED DNES.

Methods Similarity matrix Index set

DNE-PCA Sij = −1/N j : xj ∈ X
DNE-LDA Sij = 1/nci j ∈ V (ci)

DNE-ISOMAP Sij = (− 1
2
HD2

GH)ij j : xj ∈ X
DNE-LE Sij = (M +MT −MTM)ij j ∈ Nk(i)

DNE-LLE Sij = e−||xi−xj ||2/t j ∈ Nk(i)
DNE-MFA Sip = 1, Siq = −1 p ∈ Vk1

(ci),
q ∈ Vk2

(c̄i)

see, minimizing E is equal to impose WWT = I on the
weight matrix.

Objective function: After computing the embedding term
L for every two samples and the regularization term E for
each sample, we combine them together as a general objective
function Φ for the proposed DNE framework:

Φ = L(X, f(·|W ) ) + λE(X, g(·|WT ) ) (7)

where λ is a tuning parameter which balances the embedding
term L and the regularization term E.

B. The Training of DNE

A two-step procedure is exploited to efficiently train the
weights W of the proposed DNE, which consists of a layer-
by-layer pretraining and a final fine-tuning.

Pretraining: Before introducing the pretraining procedure,
we would like to recall the conception of Restricted Boltzmann
Machine (RBM) [5], which plays an important role in pre-
training. A RBM consists of a visible layer and a hidden layer.
Each node in the visible layer is connected to each node in the
hidden layer, and values of these nodes are all binary-valued.
The energy function of this model is defined as follows:

F (v,h) = −vTwh− cv − bh (8)

where v and h are respectively the visible and hidden nodes, w
is the weight matrix between visible nodes and hidden nodes,
c and b are respectively the visible biases and hidden biases.

RBM cannot handle real-valued data well because its vis-
ible nodes are binary-valued, while Gaussian restricted Boltz-
mann machine (GRBM) contains real-valued visible nodes and
has the following energy function:

F (v,h) =
∑
i

(vi − ci)2

2σ2
i

−
∑
i

∑
j

vi
σi
wijhj −

∑
j

bjhj (9)

Where {wij , ci, bj} are model parameters, σi is the standard
deviation of the Gaussian noise for visible node i. Based on
the energy function, the joint probability distribution of all the
nodes is defined as:

P (v,h) =
1

Z
exp(−F (v,h)) (10)

where Z is a normalization factor that scales P (v,h) to [0,1].
The RBM parameters {w,b, c} can be trained by minimizing
the negative log-likelihood −

∑
h logP (v,h) via stochastic

gradient descend. Although exact gradients are intractable, they



can be approximated by Contrastive Divergence (CD) [16],
which has been proved to be efficient in practice.

Pretraining [5] is an unsupervised learning strategy which
treats adjacent two layers as a RBM and trains RBMs layer-
by-layer, to obtain good initial weights that are close to the
optimum. Taking Fig. 1 as an example, we pretrain the weight
W1 by regarding the input layer (the input face image) and
the first hidden layer with 1000 nodes as a GRBM. When
pretraining the weight W2, we regard the first hidden layer
and the second layer with 500 nodes as a RBM, and the input
to this RBM is the output of the GRBM. In the same way, we
pretrain all the weights by training the RBMs in a bottom-up
manner. In this procedure, it should be noticed that DNE can
exploit a large amount of unlabeled data to find good initial
weights when performing supervised dimensionality reduction
with labeled data.

Fine-tuning: After the pretraining procedure, we fine-tune
the weights through backpropagating derivatives of the general
objective function to achieve better performance.

C. Algorithms for Dimensionality Reduction

In this section, inspired by several well-known algorithms,
namely PCA, LDA, ISOMAP, LE, LLE and MFA, we utilize
DNE as a general platform to develop associated dimen-
sionality reduction algorithms: DNE-PCA, DNE-LDA, DNE-
ISOMAP, DNE-LE, DNE-LLE and DNE-MFA. Similar to [3],
we unify the six algorithms and rewrite the general objective
function in Eqn 7 as follows:

Φ =
∑
i,j

Sij‖f(xi)− f(xj)‖2 + λ
∑
i

‖g(f(xi))− xi‖ (11)

where Sij is the similarity between the input xi and xj , f(xi)
and g(f(xi)) are respectively the low-dimensional representa-
tion and the reconstruction of xi, λ is a ratio which balances
the embedding term and the regularization term.

In the following, by changing the definition of similarity
matrix S, we utilize the DNE framework to implement PCA,
LDA, ISOMAP, LE, LLE and MFA. We give a summary of
these similarity matrixes in Table I.

DNE-PCA: The goal of PCA is to find projection direc-
tions which maximize the variance of the data. To be consistent
with the goal, DNE-PCA tries to remove projection directions
which minimize the variance, and defines the similarity matrix
as Sij = −1/N , where N is the total number of input samples.

It should be noticed that DNE-PCA is different from deep
autoencoder (DAE) [5] which is often regarded as a nonlinear
extension of PCA. DNE-PCA explicitly considers to maximize
the variance in the projected low-dimensional space while DAE
does not.

DNE-LDA: LDA aims to find directions which maximize
the interclass variance and minimize the intraclass variance.
DNE-LDA follows to define the similarity matrix as Sij =
1/nci , j ∈ V (ci), where ci is the class that sample xi belongs
to, nci is the number of samples whose class is ci, and V (ci)
is the index set of class ci. Thus, by adding the regularization
term, the objective function of DNE-LDA follows Eqn 11.

We notice that DNE-LDA relaxes two assumptions arisen
in traditional LDA: 1) the distribution of data of each class is
Gaussian; 2) the number of classes is bigger than the number
of projection dimensions.

DNE-ISOMAP: In order to preserve the geodesic dis-
tances of the data points when they are projected to the
low-dimensional space, we define the similarity matrix as
Sij = (− 1

2HD
2
GH)ij [3], where DG is geodesic distance

matrix [2], H = I − 1
N ee

T , and e is a N -dimensional
unit vector. Reconstruction error is also employed as the
regularization term in the objective function of DNE-ISOMAP.

DNE-LLE: The assumption made by LLE is that the local
property of the high-dimensional data is preserved in the pro-
jected low-dimensional space, which is followed by DNE-LLE.
Let Nk(i) be the index set of k nearest neighbors of sample xi,
M be the local reconstruction weight matrix:

∑
j∈Nk(i)

Mij =
1, Mij = 0 if j /∈ Nk(i) [4]. So the similarity matrix of DNE-
LLE is defined as Sij = (M +MT −MTM)ij if i 6= j;
0 otherwise [3]. The similarity matrix and the reconstruction
error are respectively utilized to compute the embedding term
and the regularization term in Eqn 11.

DNE-LE: In order to preserve the local structure of the
data, DNE-LE uses Sij = e−||xi−xj ||2/t as the similarity
matrix, where t is a tuning parameter [6]. By combining
the embedding term and the regularization term together,
the objective function of DNE-LE also follows the proposed
general objective function.

DNE-MFA: Similar to MFA which characterizes the
interclass separability and intraclass compactness, we define
the similarity matrix as: Sip = 1 if p ∈ Vk1(ci), and Siq = −1
if q ∈ Vk2(c̄i), where Vk1(ci) is the index set of k1 nearest
neighbors whose classes are ci, and Vk2(c̄i) is the index set
of k2 nearest neighbors whose classes are not ci, Thus, the
objective function of DNE-MFA follows the formulation in
Eqn 11.

IV. EXPERIMENTAL RESULTS

In this section, we will apply the proposed DNEs (DNE-
PCA, DNE-LDA, DNE-ISOMAP, DNE-LE, DNE-LLE, DNE-
MFA) to two applications. One is face recognition and the oth-
er is digit classification. Before this, we present face manifold
visualization.

A. Manifold Visualization

It is widely believed that high-dimensional data can be
efficiently represented by their intrinsic low-dimensional man-
ifold. Various manifolds have been discovered by some di-
mensionality reduction algorithms, such as [4] and [1]. In the
following, we show that the proposed algorithms (DNEs) are
also able to detect meaningful manifolds of high-dimensional
face images. The experimental dataset is a face image set
which is also used in [4]. The dataset contains 1,965 gray-
level face images, each one is taken from sequential frames of
a small video and represented by a 560-dimensional vector.

All the DNEs are utilized to generate two-dimensional
manifolds for the face images. Due to limited space, we just
select three representative manifolds for illustration in Fig.
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Fig. 2. Two-dimensional embedding of face images by DNE-LE, DNE-LLE and DNE-ISOMAP, respectively.

2, which are respectively obtained by DNE-LE, DNE-LLE,
and DNE-ISOMAP. All of them apply a 560-1000-2 neural
network. In the manifolds, each face is embedded as a two-
dimensional point, and several representative faces are shown
next to the corresponding data points. As can be seen in Fig.
2 (a), there exist two clusters of data points corresponding to
different facial expressions, e.g., happy expressions in the top
cluster and abnormal expressions in the bottom cluster. Among
each cluster, the face images distribute evenly due to their
large variations and the facial expressions and viewpoints are
varying smoothly along the tube-like manifold. Between the
two clusters, there exist a small amount of face images with
normal expressions, which account for the expression tran-
sition. Similarly, we can observe two clusters of face images
with different facial expressions in all three manifolds because
DNE-LE, DNE-LLE and DNE-ISOMAP all aim to preserve
the properties of high-dimensional data during embedding,
which implicitly impose clustering constraints on the data.
However, among these three manifolds, the shapes of clusters
are quite different, which can be attributed to the various
preserved properties.

B. Face Recognition

In order to evaluate the six DNEs quantitatively, we first
perform face recognition experiments and compare the results
of DNEs with those of PCA [11], LDA [12], LPP [1], MFA
[3] and DAE [5]. We do not compare the results of ISOMAP
and LLE because of their “out of sample” problems. LPP is
compared because it is the linear extension of LE and is very
popular in face recognition.

TABLE II. EXPERIMENTAL RESULTS ON THE PIE DATASET.

Method Dimension Error Rate
PCA [11] 150 20.6%
LDA [12] 67 5.7%
LPP [1] 110 4.6%
MFA [3] 85 2.6%
DAE [5] 70 3.5%
DNE-PCA 70 3.3%
DNE-LDA 70 1.8%
DNE-ISOMAP 70 3.1%
DNE-LE 70 3.1%
DNE-LLE 70 3.3%
DNE-MFA 70 1.6%

In this experiment, we use the CMU PIE database [17],
which contains 41,368 face images from 68 persons. The
face images in this dataset are collected under 13 different
poses, 43 different illumination conditions, and with 4 different
expressions. 170 face images are used for each person, 85 for
training and 85 for testing.

Similar to the data preprocessing in [1], we project all the
face images to a PCA subspace to reduce noise. In this step,
we preserve 98% of the energy and obtain a 157-dimensional
feature for each image. The architecture of DNE in this
experiment is similar to Fig. 1, the input layer and three hidden
layers have respectively 157, 200, 70 nodes (i.e., a 157-200-
70 DNE). We employ the pretraining procedure to initialize
the network weights, and the fine-tuning procedure to tune
the weights better. Then, the trained network is utilized as
transformation to project the test data to the low-dimensional
representations. Finally, the obtained low-dimensional repre-
sentations are classified by a nearest neighborhood classifier.

The recognition results are listed in Table II, which are
evaluated by misclassified error rate. We select the reduced
dimensions of traditional PCA, LDA, LPP and MFA when
they achieve the lowest error rate. The reduced dimensions
of our DNEs are not very sensitive in a large range, and the
experimental results remain stable when the dimensions are
larger than 70, so we select 70 as the reduced dimension for
all the DNEs. As we can see from Table II, our six DNEs
generally perform better than the corresponding traditional
algorithms, which indicates that deep neural network has an
ability of modeling complex transformation. Through consid-
ering the relationships between the samples by preserving the
statistical or geometrical properties, our six DNEs all achieve
better results than DAE. Although both DAE and DNE-PCA
are two nonlinear extensions of PCA based on deep neural
network, DNE-PCA achieves a lower error rate than DAE on
this dataset, which demonstrates the effectiveness of DNE.
By fully exploiting class label information, two supervised
algorithms DNE-LDA (1.8%) and DNE-MFA (1.6%) achieve
the best performance. Therefore, DNE-LDA is not restricted
to the assumption that the distribution of data is a Gaussian.

The selection of parameter λ in our experiment do not has a
significant impact on the results. We select two algorithms for
illustration, namely the unsupervised DNE-LE and supervised
DNE-MFA, and show their plots of error rate versus parameter



λ in Fig 3. As we can see, the error rate is not sensitive to the
parameter λ in a large range.
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Fig. 3. The plots of error rate versus parameter λ on the PIE dataset by
DNE-LE and DNE-MFA.

C. Digit Classification

In this section, we further apply the DNEs to the applica-
tion of digit image classification, and compare their results to
the same algorithms in the last experiment. We re-implement
all the comparison algorithms.

The MNIST dataset1 is used in this experiment. Each digit
image has a size of 28 × 28 pixels. Because of computational
limitation, we randomly select 1,000 digit images for each
digit, 500 for training and 500 for testing. To make fair
comparisons, we directly perform classification on the raw data
with a nearest neighborhood classifier and take its error rate
6.5% as a baseline.

In this experiment, we employ a (28×28)-500-200-30 neu-
ral network as the architecture of DNEs. After pretraining and
fine-tuning procedures, we utilize the trained network to obtain
low-dimensional representations for all the test digit images.
Finally, we also adopt a nearest neighborhood classifier to
classify the low-dimensional representations. The classification
results of all the algorithms are also measured by the error
rate which are shown in Table III. From the table, we can
obtain similar results to the face recognition experiment. DNE-
PCA, DNE-LDA, DNE-LE and DNE-MFA outperform their
corresponding traditional algorithms by 1.2%, 6.8%, 2.9% and
5.0%, respectively. Due to the large variations of digit images,
the similarities computed from the original data space can not
reflect the real relationships between samples. So the three
unsupervised method: DNE-ISOMAP, DNE-LE and DNE-
LLE perform similarly. The similarities of the two supervised
algorithms DNE-MFA and DNE-LDA are only related to the
class label information and they achieve the relatively better
results with the error rates of 4.5% and 4.8%, respectively.
The experimental results remain stable when the reduced
dimensions are larger than 30.

V. CONCLUSION AND FUTURE WORK

This paper has proposed a nonlinear embedding framework
named Deep Neural network Embedding (DNE). Regarding
DNE as a general platform, we have developed six dimension-
ality reduction algorithms inspired by PCA, LDA, ISOMAP,
LE, LLE and MFA. In the face recognition and digit classifi-
cation experiments, DNE has achieved better results than the
state-of-the-art algorithms. In the future, we will propose more

1The MNIST dataset is available at: http://yann.lecun.com/exdb/mnist/.

TABLE III. EXPERIMENTAL RESULTS ON THE MNIST DATASET

Method Dimension Error Rate
PCA [11] 55 6.2%
LDA [12] 9 11.6%
LPP [1] 55 7.9%
MFA [3] 45 9.5%
DAE [5] 30 5.3%
DNE-PCA 30 5.0%
DNE-LDA 30 4.8%
DNE-ISOMAP 30 5.1%
DNE-LE 30 5.0%
DNE-LLE 30 5.1%
DNE-MFA 30 4.5%

powerful algorithms by designing new embedding terms which
preserve both local and global prosperities of the data.
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