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a b s t r a c t

Spatial information is an important cue for visual object analysis. Various studies in this field have been
conducted. However, they are either too rigid or too fragile to efficiently utilize such information. In this
paper, we propose to model the distribution of objects' local appearance patterns by using their co-
occurrence at different spatial locations. In order to represent such a distribution, we propose a flexible
framework called spatial feature co-pooling, with which the relations between patterns are discovered.
As the final representation resulted from our framework is of high dimensionality, we propose a semi-
greedy (SG) grafting algorithm to select the most discriminative features. Experimental results on
the CIFAR 10, UIUC Sports and VOC 2007 datasets show that our method is effective and comparable
with the state-of-art algorithms.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Spatial modeling is of great significance for both human visual
system and computer vision. As shown in Fig. 1, if an object is
described as ‘grass around, wool in the middle’, we will easily
regard it as a sheep. If a sky pattern emerges in the upper part
of a picture, we tend to consider this picture as an outdoor scene.
Moreover, if such a pattern exists at both upper and lower
positions of an image with a rigid object in the middle, it is highly
possible to be inferred as an aeroplane. It is also easy to predict a
boat by the water below, and judge a car by the road around.
Besides, similar local patterns may appear in different locations of
an image. For example, the two pink bounding boxes in the first
image are both wool-like patterns. The process of using these
meaningful appearance patterns and location distributions is
specially called ‘spatial modeling’ in this paper.

There have been some studies aiming at modeling features'
spatial distributions. We roughly divide them into four categories.
The first one is building pooling regions according to some rules, and
the final representation is the concatenation of each regions' pooling
result [1,2]. Such methods are robust to small shifting of local
features. However, the partition of regions is too rigid to dig out
more information from features' locations, e.g., the relationship of
two spatial non-adjacent features. The second category is to directly
learn the spatial distribution from features' positions [3,4]. These
approaches perform not well for the poorly aligned datasets. The

third category exploits the co-occurrence information between visual
vocabularies [5], but such a representation is complex and ignores
the spatial distribution of features. The last one is sampling dis-
criminative patches when extracting low level features [6,7]. How-
ever, most approaches use dense sampling for speed concerns.

Different from the above-mentioned methods, we propose a
spatial feature co-pooling (SCP) framework in this paper. It first
divides an image into several blocks. For each block, a standard
pooling method is employed. Then adjacent blocks are pooled
together to form a region, which is of multiple sizes to capture
any patterns of different scales. Regions in different locations are
further merged, and finally all of them are concatenated into the
final representation. Our framework can model a wide range of
spatial distributions of appearance patterns, and exploit different
relations between them. Our method is more flexible than previous
models since it can exploit the relationship between spatially
adjacent and non-adjacent regions.

The image representation after spatial feature co-pooling is of high
dimensionality. When the dictionary size is large, it is easy to become
computationally infeasible. Therefore, feature selection is necessary to
choose the most discriminative patterns. Optimizing the problem
directly is difficult for a large scale visual task, e.g., object classification.
We adopt grafting [8], an incremental feature selection algorithm, to
achieve an approximate solution to this problem. To improve the
speed of feature selection, a batch version of grafting is proposed.
However, the performance of the algorithm deteriorates very fast as
the batch size1 becomes large. To further overcome this problem, we

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2014.02.015
0925-2312/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail address: seu.liufeng@gmail.com (F. Liu). 1 The number of features added in one iteration.

Neurocomputing 139 (2014) 415–422

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2014.02.015
http://dx.doi.org/10.1016/j.neucom.2014.02.015
http://dx.doi.org/10.1016/j.neucom.2014.02.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.02.015&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.02.015&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.02.015&domain=pdf
mailto:seu.liufeng@gmail.com
http://dx.doi.org/10.1016/j.neucom.2014.02.015


present a semi-greedy (SG) grafting algorithm. It filters features with
little discriminative information, which is implemented by solving
a L2;1 regularized least square regression problem via half-quadric
optimization.

The major contributions of this work are two folds: (1) We
present a spatial feature co-pooling framework. It can be used to
exploit a wide range of spatial structures of local appearance
patterns. It can clearly describe the co-occurrence information of
similar patterns at different spatial locations. (2) We provide a
theoretical analysis to the original grafting algorithm, and propose
a modified version of grafting named SG grafting for discrimina-
tive feature selection, which improves grafting with an embedded
optimization algorithm.

The rest of the paper is organized as follows. In Section 2,
we describe our algorithm platform and propose a spatial feature
co-pooling scheme. In Section 3, we provide a theoretical analysis
to the grafting algorithm from the viewpoint of the proximal
gradient method [9,10], and present our improved grafting algo-
rithm for the feature selection problem. Experimental results
are reported in Section 4. At last, we summarize the paper in
Section 5.

2. Modeling patterns' distributions

The spatial distribution of meaningful appearance patterns is
an important cue for image analysis, as illustrated in Fig. 1. On the
one hand, the spatial distribution reflects context and material
information with spatial constraints, e.g., describing a sheep
picture as ‘grass around and wool in the middle’, or a boat picture
as ‘sky above, water below and wood in the middle’. On the other
hand, it contains some class-specific structures such as the
distribution of non-adjacent eyes for a face and non-adjacent
wheels for a car.

We choose the popular bag-of-feature (BoF) model as our
algorithm platform, wherein each pattern in an image is ultimately
represented by one or more visual words. Measuring the co-

activation of them over different spatial regions is to mimic
the visual perception of locating the objects' features. Before
proposing the spatial feature co-pooling, we first briefly review
the standard pooling method.

2.1. Pooling revisited

Spatial pooling is a key step in the BoF model. It integrates
feature responses on each visual word into one value. Typically,
average pooling or max pooling is used, which preserves the
average or the maximum feature response.

As the BoF model ignores the spatial layout of features, some
researchers try to model the spatial relations of local features at
the pooling step. Lazebnik et al. propose a technique of spatial
pyramid matching (SPM) [2], which first divides an image into
cells of multiple resolutions and then concatenates the pooling
results on each cell as the final representation. Based on cell
division, Sharma et al. [11] use visual saliency as a weight for each
cell and jointly learn the saliency scores and the large margin
classifier, where the visual saliency consists both features saliency
and spatial saliency. Huang et al. [12] develop a strategy called
multiple spatial pooling to model the global spatial structure of
objects. A feature can be pooled multiple times with different
weights according to its relationship with the Gaussian distribu-
tions. Ji et al. [13] propose an unsupervised object-enhanced
feature generation mechanism which highlights the features from
regions of objects, which can be seen as given more weights to
features of the objects during pooling. Krapac et al. [4] fit a GMM
for each visual word and use a Fisher vector to represent the
spatial information of a picture. Jia et al. [1] learn a best pooling
region from a predefined over-completed region. Feng et al. [3]
learn a class specific pooling function from features' geometric
information. Yang et al. [14] use a co-occurrence matrix between
visual words under particular spatial constraints to model spatial
information.

Unlike their approaches, we propose to model the distribution
of patterns by using the co-occurrence of appearance patterns

Fig. 1. Several examples of the role of spatial modeling for visual object analysis. Best viewed in color. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this paper.)
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at distinctive spatial locations. Cao et al. [15] also try to model
the pattern's distribution by using the segmentation result and
embed it to SPM, where segmentation information serves as local
information. In our approach, we exploit the global and the local
layout of patterns, and no extra information is needed.

2.2. Spatial feature co-pooling

Spatial feature co-pooling is a framework which can be used to
exploit a wide range of spatial distributions of appearance pat-
terns. Its core idea is to pool features of distinctive spatial locations
together and use a pooling function to describe the patterns'
relationships. As shown in Fig. 2, our framework consists of the
following steps. First, features from adjacent blocks are pooled
together to form a region. Then regions with different locations are
pooled together and concatenated to form the ultimate represen-
tation of a picture. We explain each step in detail as follows.

A picture is first divided into several regular blocks. According
to their locations in an image, features falling in the same block are
pooled together by a standard pooling method, e.g., max pooling
and average pooling. This is a spatial location quantization process,
through which a feature gains some invariance to small shifting. At
the same time, it makes feature matching available between
different pictures, since they are always different in size.

Then several adjacent blocks are merged together to form a
region to represent patterns of varying resolutions. Fig. 2 (S2) gives
us an illustration of such merging with regions containing 1�1,
1�2, 2�1 blocks. The histogram representations of the blocks
of the same color are combined by a pooling operation, and we
call the combined representation as the region's representation.
Typically, we use max pooling or average pooling in this step.

Afterward, the co-occurrence of patterns is discovered by
taking a min pooling over regions of different positions, both
adjacent and non-adjacent (S3). In this paper, we just study the
configuration of pairwise regions to reduce complexity. It is the
core part of the proposed spatial co-pooling method. Owing to a
pattern that can be well represented by the responses of one or
several visual words, measuring the co-activation of such visual
words of different regions can best reflect the existence of co-
occurrence patterns at this area.

However, it is difficult for the standard pooling method to find
out the co-activation between visual words, because what they
reflected is the accumulative information. Inspired by the inter-
section kernel, we propose a min pooling strategy, which takes
the minimum value of the input vectors at each dimension. Only

similar appearance patterns of the inputs are kept because the
output value at each dimension is nonzero only if both its inputs
are nonzero. As shown in Fig. 2, if a pattern only appears in one
region, its responses of visual words will be suppressed after the
min pooling operation under this region configuration.

Since the pooled representation of one region configuration can
describe the patterns' co-occurrence at this area, we can roughly
model the patterns' distribution on a whole image by concatenat-
ing the pooling results of different region configurations.

The processes above together are called spatial co-pooling.
We are free to choose the pooling method on each step. We can
even use several pooling methods on the pairwise region merging
step, what we need is just to concatenate the representations of
different pooling methods together. The proposed spatial co-pooling
is a flexible framework, with different pooling methods used,
different pattern relations can be reflected.

2.3. Model training

The output of spatial feature co-pooling is a histogram of a fixed
length. Compared with the standard BoF model, the main difference
is that we replace the pooling step with spatial feature co-pooling.
We train the model by optimizing the following problem for each
class separately:

min
w

1
n

∑
n

i ¼ 1
maxð0;1�yiw

TxiÞ2þλwTw ð1Þ

wherew is the learned weight, xi is each picture's representation, yi
is the label of xi and n is the number of training pictures. The first
term is the square of hinge loss which is also called L2 SVM loss
[16]. This loss function preserves the large margin property and has
a continuous first-order divertive, which can be solved quickly. The
second term is a regularizer to control the model's complexity. Due
to the high dimensionality of x, training such a model directly
is computationally infeasible for most personal computers. So a
feature selection procedure is performed before training, and we
will discuss it in the next section.

3. Feature selection

Usually, a pattern has its class specific distribution, e.g., freq-
uently appearing locations. Also, not all the patterns are discrimi-
native for classifying a specific class. Generally, only a part of visual
words' responses under particular region configurations are

Fig. 2. A toy example of spatial feature co-pooling. The encoded features are first pooled onto the 16 blocks using max pooling ðB1 ;…;B16Þ. Then adjacent blocks are pooled
together to form regions (e.g., R14, R6þ7, R9þ13 are regions of size 1�1, 1�2, 2�1 blocks respectively). They are merged via max pooling. Two regions are further combined
by min pooling which takes the minimum of the two inputs as output at each dimension (e.g., C14⋂15 is the pooling result of the configuration of R14 ;R15). Finally the ultimate
representation is the concatenation of responses over all configurations. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this paper.)
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useful. Moreover, training a problem of high dimensionality is
challenging. Thus, it is necessary to introduce a feature selection
here. In particular, we propose two strategies for feature selection:
the global manner and the local manner.

The global one selects features over all classes, formulated as
the following problem:

min
W

1
n

∑
n

i ¼ 1
∑
c

j ¼ 1
maxð0;1�yijw

T
j xiÞ2þλ1‖W‖2F þλ2‖W‖2;1 ð2Þ

where W¼ ðw1;…;wcÞ is a d� c weight matrix, d is the number of
features, c is the number of classes, n is the number of training
samples, xi is the ith training sample and yij is a label indicator.2

‖W‖2;1 is defined as the sum of the L2 norm for each row of the
weight matrix, and it is used to select features useful for all classes.

The local manner selects features for each class separately. Note
that it can be seen as c two-class problems, and for each class
the objective can be written as the formulation above. So in the
subsections below, we just take (2) as the objective of our feature
selection problem.

3.1. Grafting revisited

Optimizing (2) directly is usually difficult, so we choose to use
an incremental algorithm named grafting [8] to obtain an approx-
imate solution. Grafting is a greedy algorithm which iterates over
a candidate feature collection step and a model retraining step.
At each iteration, it computes the gradient of the loss function
with respect to the features' coefficients and selects the one with
the largest magnitude. Then the model is retrained using the
features selected previously along with the new selected one.

Jia et al. [1] use grafting to handle a multi-class feature selec-
tion problem by replacing the original gradient magnitude with
the L2 norm of the objective's gradient with respect to a particular
row of the coefficient matrix. Note that from the viewpoint of
proximal gradient [9,10], the L1 norm can be seen as a shrinkage
and threshold function of the new updated coefficients, and a
proximal gradient based algorithm can be interpreted as shrinking
and filtering the model's coefficient iteratively. It is similar to
grafting, which selects a feature with the largest gradient magni-
tude. Consequently, the gradient with respect to the L2;1 regular-
izer term can be removed from the gradient calculation step. So
the objective can be rewritten as

LðWÞ ¼ 1
n

∑
n

i ¼ 1
∑
c

j ¼ 1
maxð0;1�yijw

T
j xiÞ2þλ‖W‖2F ð3Þ

In order to improve the speed of feature selection, usually more
than one features will be added in each iteration.

3.2. SG grafting

The algorithm above does well only when the batch size (the
number of features selected in one iteration) is small. When the
batch size becomes larger, the performance begins to deteriorate,
which is possibly caused by

� The model coefficients in grafting are initialized as zeros. Selecting
a large batch of features may lead to an inaccurate model.

� In a greedy algorithm, no feature will be discarded once selected,
even though it is less discriminative. This can also lead to an
inaccurate model.

To solve the above problems, we propose the semi-greedy
(SG) grafting algorithm. The proposed SG algorithm is still a greedy

algorithm but it will throw away some features from those selected
previously and currently by adding a filter step. Nondiscriminative
features will be dropped out during this process. The importance of
features is determined by the magnitude of their weights, i.e.,
discriminative features tend to have larger weights and vice versa.
This idea is inspired by the Recursive Feature Elimination (RFE) [17].
We have interpreted it from the viewpoint of proximal gradient.
More specifically, we put the newly added features and the features
with the smallest ‖Wj

F‖2 to the filter step,3 during which an
embedded feature selection algorithm is performed to remove the
unstable features.

The filter step preserves robust features by solving a standard
L2;1 regularized least square regression problem:

min
W

JY�XWJ2F þλ‖W‖2;1 ð4Þ

where n, d, c in the data matrix XARn�d, the weight matrix
WARd�c and the label matrix YARn�c correspond to the number
of training instances, the number of features and the number of
classes respectively. Since the predicted label of a one-vs-all SVM is
determined by the maximizer of the scores wT

i x, both one-vs-all
SVM and the least square regression problem pursue to maximize
the score of the target class and suppress others. So we can replace
the original L2 SVM loss with the square loss. Our method is
summarized in the following algorithm.

Algorithm 1. SG grafting.

Inputs: Data matrix X, label matrix Y, the number of features
wanted T, the batch size b, the revaluation set size k

Outputs: The indices of selected features F and the learned
weight WF

Initialize: Free set F ¼ |, zero set Z ¼ f1;…;dg, weight matrix
W¼0

While jFjoT
1. Set active set A¼ |
2. Compute the gradient of (3) w.r.t. WZ , and denote as ∇LðWF Þ
3. Put b features with the largest lVert∇LðWF Þi‖2 to the active

set A , iAZ
4. Filter Step

a. Set revaluation set R¼ |
b. Sorting WF and put the k features with the smallest

‖Wi
F‖2 to the revaluation set R

c. A¼ A⋃R; F ¼ F�R; Z ¼ Z⋃R
d. Solve the optimization problem of (4) using Algorithm 2

and remove features which satisfy Wi
A ¼ 0 from A, iAA

5. F ¼ F⋃A; Z ¼ Z�A
6. Retrain WF by solving (3) via gradient descent.

3.3. HQ optimization

By replacing the loss function with a square loss, we are able to
adopt the framework proposed in [18] to solve the problem of (4)
via half-quadratic (HQ) optimization [19]. As the minimizer func-
tion of L2;1 norm is unpredictable near the origin, ϕðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
εþx2

p
is

often used to replace the absolute value function, where ε is a
smoothing term. And (4) can be rewritten as

min
W

‖Y�XW‖2F þλ ∑
d

i ¼ 1
ϕð‖Wi‖2Þ ð5Þ

2 If sample i belongs to class j, yij ¼ 1, otherwise yij ¼ �1.

3 The superscript denotes the jth row, and the subscript F denotes the free set.
A free set is a set of already selected features. Accordingly, zero set is a set of
unselected features.

F. Liu et al. / Neurocomputing 139 (2014) 415–422418



According to Lemma 1 in [18], (5) can be reformulated to

min
W

JY�XWJ2F þλ TrðWTQWÞ ð6Þ

where Q ¼ diagðqÞ, qARd is an auxiliary vector, which is uniquely
determined by the minimizer function δð�Þ. Based on HQ, (5) can
be solved by alternately minimizing:

qti ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

JWi J22þε
q ð7Þ

Wt ¼ ðXTXþλQ Þ\XTY ð8Þ
where (8) is obtained by setting the derivative of the objective in
(6) with respect to W to zero. We summarize the above algorithm
in Algorithm 2.

Algorithm 2. Solving (4) via HQ optimization.

Inputs: Data matrix XARn�d, label YARn�c

Outputs: weight matrix WARd�c

Initialize: W’0 and t’1;
Repeat
1. Compute auxiliary vector qt according to (7);
2. Compute Wt according to (8);
Until converges

Compared with the gradient-based method, the above alter-
nately minimizing algorithm usually takes fewer iterations for
convergence. As the main computational cost in Algorithm 1 is to
solve the linear problem in (8), it is usually very fast when the
number of features is not very large. So it fits our framework well
wherein this algorithm is only used in the filter step during which
just a small set of features are involved.

4. Experiments

We first introduce the datasets, evaluation protocol and imple-
mentation details in Section 4.1, and then compare the perfor-
mance of the original grafting algorithm and our proposed SG
grafting. We also discuss the influence of the local and global
feature selection methods. At last, we report our results on the
CIFAR 10, UIUC Sports, and VOC 2007 datasets.

4.1. Experimental datasets and settings

Three datasets are used to evaluate spatial modeling algo-
rithms. They are detailed below.

� CIFAR 10 [20] is an object classification dataset with 10 object
categories. It consists of 60,000 32�32 color images. Among
them, 50,000 images are for training and the remaining 10,000
are for testing.

� UIUC Sports [21] is a static event recognition dataset with
8 sport events. For each event we randomly choose 70 pictures
for training and 60 pictures for testing. We repeat the experi-
ment five times, and mean accuracy and standard deviation are
reported.

� VOC 2007 [22] is a challenging dataset for object classification.
It consists thousands of images of real world scenes over
20 classes. The split train and val is used for training, and
test is used to evaluate algorithms.

We follow a standard BoF paradigm [23] to train the classifica-
tion algorithms, and the settings for every step are detailed below.

Basic settings: Whitened 6�6 pixel color image patches [24] are
used as features on the CIFAR 10 dataset. SIFT features [25] extracted
at scales 4, 6, 8, 10 with a stride of three pixels are adopted on
the other two datasets. K-means clustering algorithm is employed
to generate visual dictionaries from one million randomly selected
features. Triangle coding [24] is chosen to encode the local features
on the CIFAR 10 dataset, while locality-constrained linear coding
(LLC) [26] is used on the other two datasets.

Spatial modeling: Our work mainly focus on the spatial modeling
process. The spatial pyramid matching (SPM) [2] and the receptive
field learning (RFL) [1] are chosen as the baseline algorithms. For
SPM, partition 1�1, 1�3, 2�2 is used on the VOC 2007 dataset, and
that of 1�1, 2�2, 4�4 is used on other datasets. For receptive field
learning (RFL) [1] we follow the same configuration as in [1]. As to
the proposed spatial co-pooling (SCP) algorithm, a 4�4 partition is
used to build the blocks on non-VOC datasets, and multi-resolution
with a partition of 2�2 and 3�3 is exploited on the VOC 2007
dataset. Candidate regions can be of sizes 1�1, 1�2, 1�3, 1�4,
2�1, 2�2, 2�3, 2�4, 3�1, 3�2, 4�1, 4�2 blocks. Configuration
of regions is any two regions with the same size and without
overlapping.

4.2. Grafting vs SG grafting

In this section we compare the original grafting algorithm with
our algorithm under different batch sizes on the CIFAR 10 dataset
with a dictionary size of 100. We used the proposed improved
algorithm to select features for all classes simultaneously which
we call a global feature selection. λ1 and λ2 (for SG grafting) are
set to 0.52 and 0.2 respectively (via cross validation). The size
of revaluation set size k is set to half of the batchsize, which gives a
best tradeoff between the learning speed and the performance.
After feature selection we train a standard L2 SVM using the
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Fig. 3. Comparisons of SG grafting and grafting, the global manner and the local manner on the CIFAR 10 dataset. (a) and (b) show the improvement of our algorithm over
original grafting algorithm under different batch sizes. (c) displays the performances of global and local feature selection strategies.
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training set and test on the testing set. Their accuracies are
reported in Fig. 3a and b respectively.

The proposed method clearly improves the original grafting on
all batch sizes. The improvement becomes more apparent when
the batch sizes are larger. Such an improvement benefits from our
strategy of discarding features from the already selected ones and
filtering the new ones.

Fig. 3a and b also shows that the speed that the performance
drops is closely related with the ratio between the batch size and
the number of preserved features. It is clear that the performance
deteriorates much faster when this ratio is larger (and vice vera).
So when the total number of features to be preserved is large, we
can increase the batch size accordingly.

Note that discarding features will take more iterations for conver-
gence. For example, if it takes a hundred iterations for the original
algorithm to select enough features, the proposed method will take
5–7 iterations more. However, such filtering mainly happened in the

first several iterations from our observation. The possible reason is
that the gradient magnitude cannot fully reflect the true importance
of a feature with all weights initialized as zero. With more features
are selected, their corresponding weights help the model to make
the right decision. Since the main computation cost is retraining the
model, as well as the retraining process is quite fast when the
number of features is small, the SG grafting algorithm takes far less
time than the original one to achieve the same accuracy (we can use
a larger batchsize).

4.3. Global vs local

In the literature [27], sharing features between classes may
potentially improves the overall performance, since it is a way to
build relations between classes. However, in our cases, we find
that the spatial distribution of a particular pattern is class specific.
We design an extra experiment to verify this viewpoint. The global
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Fig. 4. Performance on the CIFAR 10 dataset.

Table 1
Performance comparison on the UIUC sports dataset.

Method LLC LLCþSPM(21� ) LLCþSCP(4� )a LLCþSCP(8� ) LLCþSCP(21� )
Accuracy 78.3371.44 87.0971.26 89.0470.63 89.0670.77 89.1170.38

a ‘a�’ means the number of features is a times the dictionary size.

Fig. 5. Performance of each class on the UIUC sports dataset.
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Fig. 6. Relation between the accuracy and the number of selected features.
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and the local feature selection are defined in Section 3. After
feature selection, we train an L2 SVM using the selected features
for each class separately. The experimental results on CIFAR 10
dataset with a dictionary size of 200 are reported in Fig. 3c.

It can be seen that the local method can achieve a much higher
accuracy at a smaller number of preserved features while the
global one needs more features to achieve the same accuracy. This
observation is consistent with our prediction that the features'
distribution is class specific. So we adopt a local feature selection
method in the subsequent experiments.

4.4. Comparison on different datasets

4.4.1. Results on CIFAR 10
In this section, our method is compared with standard SPM and

RFL with a dictionary size of 200. In our spatial feature co-pooling,
both max pooling and min pooling are employed when merging
the regions. All results are shown in Fig. 4. Our method (SCP)
performs comparably with the best results of RFL with only 800
features. When more features are selected, we yield better perfor-
mance than SPM and RFL. We have analyzed the selected features
and find that more features are obtained by min pooling, espe-
cially when the number of features to be preserved is small, which
indicates that these features are more discriminative.

4.4.2. Results on UIUC sports
In this section, we compare our method with SPM. We use LLC

as our coding method at a dictionary size of 1024. The perfor-

mance of SPM and our method is listed in Table 1 and Fig. 5. Our
method shows superiority over SPM on all classes.

We also plot a curve to show the relationship between the
accuracy and the number of features in Fig. 6. It is interesting that
the performance improves fast in the beginning followed by a
significant decline. As more features are added, the performance
improves again. It indicates that the features selected in the
beginning are widely shared by all samples in a class. The features
added subsequently are shared more by only training samples, so
the performance begins to drop. As more features are selected,
more class-specific information is discovered, and the perfor-
mance is improved again.

4.5. Results on the PASCAL VOC 2007 dataset

At last, we evaluate the proposed algorithm on the PASCAL VOC
2007 dataset. The locality-constrained linear coding at a dictionary
size of 1024 is used to encode local features. Comparison of the
algorithms of spatial co-pooling and spatial pyramid matching
is detailed in Table 2, and the spatial co-pooling has employed a
block division of 2�2 and 3�3. The total number of selected
features is 21 times the number of visual words. For the SPM, we
follow the common configurations on this dataset with a region
partition of 1�1, 1�3, and 2�2. Other configurations are also
compared and their results are reported in Fig. 7. From the table
we can find that the spatial co-pooling has improved the precision
almost on all classes (except person and plant), which demon-
strates the importance of co-occurrence patterns for classifying
objects. The decrease of performances on the person and plant

Table 2
Results on the VOC 2007 dataset.

Class Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow

SPM 65.27 54.39 33.78 58.93 19.59 48.03 69.95 48.66 44.27 33.24
SCP(21� ) 68.18 56.50 41.81 59.71 21.42 49.50 70.64 51.18 44.77 37.73

Class Table Dog Horse Mbike Person Plant Sheep Sofa Train TV

SPM 36.36 35.46 69.20 50.81 76.85 19.32 34.02 41.65 63.74 45.07
SCP(21� ) 42.45 37.70 72.97 56.65 76.08 17.33 37.93 45.03 69.46 46.10

Fig. 7. Comparison of different spatial modeling algorithms on the VOC 2007 dataset. The SCP column shows the result of the spatial co-pooling algorithm without feature
selection.
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classes is caused by the overfitting of the feature selection
algorithm since the strength of regularization is chosen globally.
A proof for this is the average precision on these two classes are
78.46 and 21.80 before feature selection.

5. Conclusion

In this paper, we have proposed a spatial feature co-pooling
framework and used a min pooling scheme to describe the spatial
distributions of patterns. Unlike traditional pooling methods,
min pooling can capture the co-occurrence of patterns at different
spatial locations, which is an important cue demonstrated by
extensive experimental results. By using blocks as the basis
instead of each feature, our method gains robustness to small
feature shifting and shows good performance on both aligned
(CIFAR 10) and unaligned datasets (UIUC sports, VOC 2007). Future
work includes designing more efficient region configurations and
improving the efficiency of the proposed SG grafting algorithm.
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