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ABSTRACT

This paper proposes a multi-task deep neural network (MT-
DNN) architecture to handle the multi-label learning problem,
in which each label learning is defined as a binary classifica-
tion task, i.e., a positive class for “an instance owns this label”
and a negative class for “an instance does not own this la-
bel”. Multi-label learning is accordingly transformed to mul-
tiple binary-class classification tasks. Considering that a deep
neural nets (DNN) architecture can learn good intermediate
representations shared across tasks, we generalize one classi-
fication task of traditional DNN into multiple binary classifi-
cation tasks through defining the output layer with a negative
class node and a positive class node for each label. After a
similar pretraining process to deep belief nets, we redefine
the label assignment error of MT-DNN and perform the back-
propagation algorithm to fine-tune the network. To evaluate
the proposed model, we carry out image annotation experi-
ments on two public image datasets, with 2000 images and
30,000 images respectively. The experiments demonstrate
that the proposed model achieves the state-of-the-art perfor-
mance.

Index Terms— Multi-Task Learning, Deep Neural Net-
work, Multi-Label Learning, Image Annotation

1. INTRODUCTION

Learning good features is very important to computer vision
and pattern recognition tasks. Taking object recognition for
an example, an object in human visual system can be rep-
resented by low-level features and high-level features, e.g.,
Gabor-like edges, object parts. Many efforts have been put
forward to train hierarchical models which contain multiple
levels of feature extractors. Recently, deep neural network
(DNN) as a typical hierarchial model has attracted much at-
tention again since Hinton et al. [1] propose an efficient learn-
ing algorithm for so-called deep belief nets (DBN). The vari-
ants of DNN have been applied in various fields with its in-
nate advantages ([2], [3], [4], [5]). Lee et al. [2] propose
a convolutional DBN for unsupervised learning of hierarchi-
cal representation which achieves better performance in im-

age classification and speaker identification. By combining
multiple sources with shared hidden representation, Srivasta-
va et al. [3] propose multimodal deep neural network to learn
representations for text and image.

In this paper, we propose a multi-task deep neural net-
work (MT-DNN) architecture to handle the multi-label learn-
ing problem based on the conclusion that deep architecture
can learn good intermediate representations shared across
tasks [6]. As we know, multi-label learning generally assigns
multiple labels to an instance simultaneously. Each label
assignment can be seen as predicting whether the instance
owns the label or not. So we transform multi-label learn-
ing into multiple single-label assignment tasks by regarding
single-label assignment as a binary classification problem.
The traditional DNN can be extended for multi-task learn-
ing by defining the output layer containing positive class
nodes and negative class nodes for each label learning. After
defining the architecture of MT-DNN, we employ unlabeled
data to pretrain MT-DNN so as to obtain good intermediate
representations for multiple binary classification tasks. The
pretraining can also provide a good initialization to MT-DNN.
Finally, we sum each task’s label assignment error as the w-
hole error of MT-DNN, and perform the back-propagation
algorithm to fine-tune MT-DNN.

The proposed method has three merits. First, pretraining
a multi-task deep neural network can exploit large amounts
of unlabeled data to obtain good intermediate representations
for all the tasks. Second, unlike many rank-based multi-label
learning algorithms [7] which need strategies to determine
classification threshold functions, the proposed MT-DNN
can automatically assign a set of labels to each instance.
Third, MT-DNN naturally models the label dependencies in
multi-label learning. The experimental results on two pub-
lic datasets in Section 4 further verify these merits of our
method.

2. BACKGROUND

In this section, we introduce deep belief nets (DBN) and
multi-label learning which are the bases of MT-DNN. Par-
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ticularly, DBN provides a principled pretraining strategy for
MT-DNN.

2.1. Deep Belief Nets

Deep belief nets (DBN) are composed of several restricted
boltzmann machines (RBM). A restricted boltzmann machine
(RBM) is an undirected graph with a visible layer and a hid-
den layer. Each visible node is connected to each hidden n-
ode. When all the nodes in both layers are binary-valued, the
energy function of this model is defined as follows:

E(v, h) = −vTWh− b1v − b2h (1)

where v and h are respectively the visible and hidden nodes,
W is the weight matrix between visible nodes and hidden n-
odes, b1 and b2 are respectively the visible biases and hidden
biases.

The input in our model is real-valued data, which can not
be well modeled by binary visible nodes. We replace the bi-
nary RBM by a Gaussian RBM whose visible nodes are linear
with Gaussian noise, the energy function becomes:

E(v, h) =
∑
i

(vi − bi)2

2σ2
i

−
∑
i

∑
j

vi
σi
Wijhj −

∑
j

bjhj

(2)
Where {W, bi, bj} are model parameters, σi is the standard
deviation of the Gaussian noise for visible unit i.

Based on the energy function above, the joint probability
distribution of all the nodes is defined as:

P (v, h) =
1

Z
exp(−E(v, h)) (3)

where Z is a normalization factor that scales P (v, h) to [0,1].
The parameters{W, b} are all trained by minimizing the

negative log-likelihood −
∑

h logP (v, h) via gradient de-
scend, the gradient can be efficiently approximated by using
contrastive divergence (CD)[8].

Several RBMs or Gaussian RBMs are stacked together to
form a deep architecture named deep belief nets, which is a
generative model of powerful representability. In a DBN, the
nodes between two adjacent layers are fully-connected, but
no connection between the nodes in the same layer. Hinton
et al. [1] propose an efficient algorithm for pretraining DBN.
Pretraining consists of greedily training adjacent two layers
as an RBM or Gaussian RBM.

2.2. Multi-Label Learning

Multi-label learning ([7], [9], [10], [11]) is a special kind of
supervised learning where each instance can belong to multi-
ple classes. It is a generalized version of multi-class learning
where each instance is restricted to belong to only one class.

LetX denote the instance set andY = {1, 2, ..., L} denote
the label set. Given the training set {(x1, Y1), ..., (xn, Yn)}
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Fig. 1. The proposed multi-task deep neural network (MT-
DNN) and its pretraining.

where xi ∈ X and Yi ⊆ Y , the goal of multi-label learning
is to learn a multi-label classifier f : X → 2L from the train-
ing dataset. In this paper, we apply deep neural network to
implement this multi-label classifier.

3. ALGORITHM

3.1. MT-DNN for Multi-label Learning

It is generally considered that deep neural network can learn
good intermediate representations shared across multiple
tasks from large amounts of unlabeled data, while multi-label
learning can be transformed to multiple single-label learning
tasks by defining single-label learning as predicting whether
an instance owns the label or not. Given these consider-
ations above, we propose multi-task deep neural network
(MT-DNN) for multi-label learning.

We illustrate the architecture of a five-layer MT-DNN in
Fig.1 (a), which contains an real-valued input layer, three
binary hidden layers for representation learning, an output
layer for label assignment. The output layer consists of
multiple pairwise nodes corresponding to multiple single-
label learning, the green solid nodes for the positive classes
{cl}l=1,...,L and the green circle nodes for the negative classes
{cl}l=1,...,L. The parameters of these layers are {Wi}i=1,...,4,
respectively. For a simple notation, the biases b1, b2 will be
ignored below.

Given an instance x, the multi-label classifier f of MT-
DNN is

f(x) = g(WT
4 (g(WT

3 g(W
T
2 g(W1

Tx)))) (4)

Here g(x) is the sigmoid function 1
1+e−x . In order to deter-

mine the l-th label, we need to compare fcl(x) and fcl(x)
corresponding to nodes cl and cl as follows:
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{
x owns label l if fcl(x) ≥ fcl(x)
x does not own label l if fcl(x) < fcl(x)

(5)

We will pretrain and fine-tune MT-DNN to learn the pa-
rameters {Wi}i=1,...,4 below.

Pretraining Similar to [12], we pretrain MT-DNN with
unlabeled data to learn intermediate representations and also
provide a good initialization for the network. First, we com-
bine the input layer and the first hidden layer together as a
Gaussian RBM, and train the parameters W1 with contrastive
divergence. The conditional probability of the first hidden-
layer nodes will be used as the input of the second hidden
layer, which is denoted as:

p(h = 1|v) = g(WT v) (6)

Then, we combine the first hidden layer and the second
hidden layer as a binary RBM, and train the parameters W2

in a similar way to Gaussian RBM. We repeat this process
for the third hidden layer. Although MT-DNN is pretrained
greedily, it has been demonstrated that the procedure will not
decrease the log-probability of the input data [1].

Fine-tuning After pretraining, we need to fine-tune
MT-DNN with labeled data by backpropagating the deriva-
tives of label assignment error. Considering multi-label learn-
ing as a multi-task learning problem, we define the whole as-
signment error of MT-DNN as the summation of each label
assignment error.

Take the l-th label assignment error as an example. We
first normalize the two outputs fcl(x) and fcl(x) to obtain the
probability of “an instance owns label l” pl:

pl =
exp(fcl(x))

exp(fcl(x)) + exp(fcl(x))
(7)

then compute the cross-entropy as the l-th label assignment
error El:

El = −[ql log pl + (1− ql) log(1− pl)] (8)

where ql ∈ Y is the truth label from the training set. Summing
over all the label assignment errors, we obtain the whole as-
signment error E of MT-DNN:

E =

L∑
l=1

El (9)

Finally, we compute the derivatives ofE over {Wi}i=1,...,4

and perform the back-propagation algorithm to fine-tune MT-
DNN.

4. EXPERIMENTAL RESULTS

In order to quantitatively evaluate the performance of MT-
DNN, we carry out some experiments in terms of image anno-
tation on two public datasets. We compare the experimental

results of MT-DNN with those of two state-of-the-art multi-
label learning methods, namely ML-KNN [9] and BP-MLL
[7]. It should be noted that although BP-MLL also utilizes
neural networks for multi-label learning, our method differs
from it in three aspects: 1) the output layer in our method is
redefined for each label assignment, 2) our method can ex-
ploit unlabeled data through pretraining, 3) our method does
not need a threshold function to determine the assigned labels.

4.1. Experiments on the Natural Scene Dataset

In this experiment, we predict labels for a natural scene image
dataset provided by Zhang et al. [9], which contains 2,000
natural scene images. All the 5 labels of these images are
desert, mountains, sea, sunset, and trees. The images which
have more than one label (e.g., desert+mountains) cover 20%
of the dataset, and the average number of labels for each im-
age is 1.3. Fig. 2 shows two images of this dataset. As we
can see, mountains and trees can be assigned to Fig. 2(a), and
sunset and sea can be assigned to Fig. 2(b).

(a) (b)

Fig. 2. Two samples of the natural scene images [9].

The architecture of our four-layer MT-DNN is designed
like this: the input layer, two hidden layers and output layer
have 294, 300, 400, 10 nodes, respectively (i.e., a 294-300-
400-10 MT-DNN). Hamming loss [9] is chosen as the evalu-
ation criterion, which computes how many times an instance-
label pair is miss-classified. The smaller the hamming loss,
the better the method. Ten-fold cross-validation is performed
in this dataset, which is also used in [9]. The experimen-
tal results are listed in Table 1. We can see that our method
achieves the lowest hamming loss, both in mean and devia-
tion, which indicates that our method is much more effective
and stable.

Table 1. The results on the natural scene dataset.

Methods Hamming Loss
BP-MLL [7] 0.271 ± 0.016
ML-KNN [9] 0.169 ± 0.071
Our method 0.157 ± 0.008

4.2. Experiments on the NUS Dataset

We also carry out image annotation experiments on a rela-
tively larger dataset to verify the effectiveness of our method.
The used dataset is called NUS-WIDE-OBJECT provided by
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Chua et al. [13], which contains 30,000 images and 31 con-
cepts. The images in this dataset are exacted from the photo
sharing web site Flickr.com. The concepts of these images
are various, such as boats, cars, flags, horses, sky, sun, tower,
plane and zebra. Fig. 3 illustrates two sample images of the
NUS dataset. As can be seen, sky and plane are two concepts
which can be assigned to Fig. 3(a).

(a) (b)

Fig. 3. Two examples of the NUS images [13].

The architecture of our four-layer MT-DNN on this
dataset is designed like this: the input layer, two hidden
layers and output layer have 634, 3000, 4000, 62 nodes, re-
spectively (i.e., a 634-3000-4000-62 MT-DNN). We do not
perform ten-fold cross-validation and can not compute the
standard deviation of hamming loss in this dataset, because
the training set and testing set have been given explicitly
(17,927 training images and 12,073 testing images) [13].
From the experimental results in Table 2, we can see that our
method achieves better performance than two state-of-the-art
methods (ML-KNN [9], BP-MLL [7]) on this dataset.

Table 2. The results on the NUS dataset.

Methods Hamming Loss
BP-MLL [7] 0.0442
ML-KNN [9] 0.0348
Our method 0.0323

5. CONCLUSION

This paper has transformed multi-label learning to multiple
binary classification tasks, and proposed a deep neural net-
work architecture to handle this kind of multi-task problem.
Experimental results on image annotation demonstrate that
the proposed model has achieved the state-of-the- art per-
formance. It can be seen that deep neural network can be a
good choice to perform multi-task learning through defining
the output layer with multiple different aims. In the future,
we will extend MT-DNN to handle multiple instances and
propose a deep neural network architecture for multi-instance
multi-label learning.
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