\{kaiye.wang, rhe, wangwei,wangliang, tnt\}@nlpr.ia.ac.cn

Abstract

Goal: match data from different modalities.
Challenge: bridge the heterogeneity gap.
Contribution: we propose a general regularization framework for cross-modal matching problem, which jointly performs common subspace learning and coupled feature selection.

Overview

Our method

LCFS = common subspace learning + coupled feature selection

Objective function

$$
\min _{\mathbf{U}_{a}, \mathbf{U}_{b}} \frac{\frac{1}{2}\left(\left\|\mathbf{X}_{a}^{T} \mathbf{U}_{a}-\mathbf{Y}\right\|_{F}^{2}+\left\|\mathbf{X}_{b}^{T} \mathbf{U}_{b}-\mathbf{Y}\right\|_{F}^{2}\right)}{\text { Coupled linear regression }}
$$

$$
+\lambda_{1}\left(\left\|\mathbf{U}_{a}\right\|_{21}+\left\|\mathbf{U}_{b}\right\|_{21}\right)+\lambda_{2}\left(\left\|\left[\mathbf{X}_{a}^{T} \mathbf{U}_{a} \quad \mathbf{X}_{b}^{T} \mathbf{U}_{b}\right]\right\|_{*}\right)
$$

$$
\begin{array}{|l|}
\hline \text { The L21 norm } \\
\hline
\end{array}
$$

The trace norm

Our method continued..

Coupled linear regression: learn two projection matrices for mapping two different modal data into a common space. The L21 norm: select the The trace norm: enhance relevant and discriminative the relevance of different features on two feature modal data with similar spaces simultaneously. relationship.
Reformulation for the trace norm:

$$
\begin{gathered}
\frac{\lambda_{2}}{2}\left(\operatorname{tr}\left(\mathbf{U}_{a}^{T} \mathbf{X}_{a} \mathbf{S}^{-1} \mathbf{X}_{a}^{T} \mathbf{U}_{a}\right)+\operatorname{tr}\left(\mathbf{U}_{b}^{T} \mathbf{X}_{b} \mathbf{S}^{-1} \mathbf{X}_{b}^{T} \mathbf{U}_{b}\right)+\operatorname{tr}(\mathbf{S})\right) \\
\mathbf{S}=\left(\mathbf{X}_{a}^{T} \mathbf{U}_{a} \mathbf{U}_{a}^{T} \mathbf{X}_{a}+\mathbf{X}_{b}^{T} \mathbf{U}_{b} \mathbf{U}_{b}^{T} \mathbf{X}_{b}+\mu_{i} \mathbf{I}\right)^{\frac{1}{2}}
\end{gathered}
$$

Algorithm 1: Iterative Algorithm for L
Feature Spaces (LCFS)

Input: $\mathbf{X}_{a} \in \mathbb{R}^{d 1 \times n}, \mathbf{X}_{b} \in \mathbb{R}^{d 2 \times n}$ and $\mathbf{Y} \in \mathbb{R}^{n \times c}$
Output: $\mathbf{U}_{a} \in \mathbb{R}^{d 1 \times c}$ and $\mathbf{U}_{b} \in \mathbb{R}^{d 2 \times c}$
Set $t=0$. Initialize \mathbf{U}_{a} and \mathbf{U}_{b} as zero matrix
repeat

1. Compute $\mathbf{V} \operatorname{Diag}\left(s_{k}\right) \mathbf{V}^{T}$ as the eigenvalue
decomposition of $\left(\mathbf{X}_{a}^{T} \mathbf{U}_{a} \mathbf{U}_{a}^{T} \mathbf{X}_{a}+\mathbf{X}_{b}^{T} \mathbf{U}_{b} \mathbf{U}_{b}^{T} \mathbf{X}_{b}\right)$.

$$
\text { 2. Set } \mathbf{S}^{-1}=\mathbf{V} \operatorname{Diag}\left(1 / \sqrt{s_{k}+\mu}\right) \mathbf{V}^{T} \text {. }
$$

$$
\sqrt{\left\{\begin{array}{l}
p_{i}=\frac{1}{2 \sqrt{\left\|\mathbf{u}_{a}^{i}\right\|_{2}^{2}+\varepsilon}} \\
q_{i}=\frac{1}{2 \sqrt{\left\|\mathbf{u}_{b}^{i}\right\|_{2}^{2}+\varepsilon}}
\end{array}\right.}
$$

3. Compute p_{i}^{t} and q_{i}^{t} according to
4. Compute \mathbf{U}_{a}^{t} and \mathbf{U}_{b}^{t} by solving the two linear

$$
\begin{aligned}
& \left.\quad \begin{array}{l}
\text { system problems in } \\
\text { 5. } t=t+1 \\
\text { mtil }
\end{array}\right)
\end{aligned} \sqrt[l]{\left(\mathbf{X}_{a} \mathbf{X}_{a}^{T}+\lambda_{1} \mathbf{P}+\lambda_{2} \mathbf{X}_{a} \mathbf{S}^{-1} \mathbf{X}_{a}^{T}\right) \mathbf{U}_{a}=\mathbf{X}_{a} \mathbf{Y}} \begin{aligned}
& \left(\mathbf{X}_{b} \mathbf{X}_{b}^{T}+\lambda_{1} \mathbf{Q}+\lambda_{2} \mathbf{X}_{b} \mathbf{S}^{-1} \mathbf{X}_{b}^{T}\right) \mathbf{U}_{b}=\mathbf{X}_{b} \mathbf{Y}
\end{aligned}
$$

until Converge

Experimental results

Evaluation: MAP, PS curve

Compared Methods:

CCA, PLS, BLM (CVPR'11): similar pairs
GMLDA, GMMFA (CVPR'12): similar pairs + label
Results on Pascal image-tag data
20 classes, 2808 / 2841 training/testing samples Image: 512-dim Gist, Text: 399-dim word frequency

Experimental results continued..

Methods	Image query	Text query	Average
PCA+PLS	0.2757	0.1997	0.2377
PCA+BLM	0.2667	0.2408	0.2538
PCA+CCA	0.2655	0.2215	0.2435
PCA+GMMFA	0.3090	0.2308	0.2699
PCA+GMLDA	0.2418	0.2038	0.2228
LCFS	$\mathbf{0 . 3 4 3 8}$	$\mathbf{0 . 2 6 7 4}$	$\mathbf{0 . 3 0 5 6}$

Table 1. Comparison of MAP for different methods

Figure 1. Precision-scope curves of different methods.
Left: Image as query, Right: Text as query

Results on Wikipedia image-text data

10 classes, 1300 / 1566 training/testing samples Image: 128-dim bags of SIFT, Text: 10-dim LDA

Methods	Image query	Text query	Average
PLS	0.2402	0.1633	0.2032
BLM	0.2562	0.2023	0.2293
CCA	0.2549	0.1846	0.2198
GMMFA	0.2750	0.2139	0.2445
GMLDA	0.2751	0.2098	0.2425
LCFS	$\mathbf{0 . 2 7 9 8}$	$\mathbf{0 . 2 1 4 1}$	$\mathbf{0 . 2 4 7 0}$

Table 2. Comparison of MAP for different methods

Figure 2. Precision-scope curves of different methods.
Left: Image as query, Right: Text as query

