

Abstract

Goal: match data from different modalities. **Challenge:** bridge the heterogeneity gap. **Contribution:** we propose a general regularization framework for cross-modal matching problem, which jointly performs common subspace learning and coupled feature selection.

The trace norm

The L21 norm

Learning Coupled Feature Spaces for Cross-modal Matching Kaiye Wang, Ran He, Wei Wang, Liang Wang, Tieniu Tan {kaiye.wang, rhe, wangwei, wangliang, tnt}@nlpr.ia.ac.cn

Our method continued.

Coupled linear regression: learn two projection matrices for mapping two different modal data into a common space.

The L21 norm: select the relevant and discriminative two feature features on spaces simultaneously.

Reformulation for the trace norm:

$$\begin{split} \frac{\lambda_2}{2} (tr(\mathbf{U}_a^T \mathbf{X}_a \mathbf{S}^{-1} \mathbf{X}_a^T \mathbf{U}_a) + tr(\mathbf{U}_b^T \mathbf{X}_b \mathbf{S}^{-1} \mathbf{X}_b^T \mathbf{U}_b) + tr(\mathbf{S})) \\ \mathbf{S} &= (\mathbf{X}_a^T \mathbf{U}_a \mathbf{U}_a^T \mathbf{X}_a + \mathbf{X}_b^T \mathbf{U}_b \mathbf{U}_b^T \mathbf{X}_b + \mu_i \mathbf{I})^{\frac{1}{2}} \end{split}$$

Algorithm 1: Iterative Algorithm for Learn Feature Spaces (LCFS)

Input: $\mathbf{X}_a \in \mathbb{R}^{d1 \times n}, \mathbf{X}_b \in \mathbb{R}^{d2 \times n}$ and $\mathbf{Y} \in \mathbb{R}^{n \times c}$ **Output:** $\mathbf{U}_a \in \mathbb{R}^{d1 \times c}$ and $\mathbf{U}_b \in \mathbb{R}^{d2 \times c}$ $2\sqrt{\left\|\mathbf{u}_{a}^{i}\right\|_{2}^{2}}+\varepsilon$ Set t = 0. Initialize U_a and U_b as zero matrix. repeat 1. Compute $VDiag(s_k)V^T$ as the eigenvalue $2\sqrt{\left\|\mathbf{u}_{b}^{i}\right\|_{2}^{2}}+\varepsilon$ decomposition of $(\mathbf{X}_a^T \mathbf{U}_a \mathbf{U}_a^T \mathbf{X}_a + \mathbf{X}_b^T \mathbf{U}_b \mathbf{U}_b^T \mathbf{X}_b)$. 2. Set $\mathbf{S}^{-1} = \mathbf{V} Diag(1/\sqrt{s_k + \mu}) \mathbf{V}^T$. 3. Compute p_i^t and q_i^t according to

- 4. Compute \mathbf{U}_a^t and \mathbf{U}_b^t by solving the two linear system problems in

5. t = t + 1

until Converges

Experimental results

Evaluation: MAP, PS curve **Compared Methods:** CCA, PLS, BLM (CVPR'11): similar pairs GMLDA, GMMFA (CVPR'12): similar pairs + label

Results on Pascal image-tag data

20 classes, 2808 / 2841 training/testing samples Image: 512-dim Gist, Text: 399-dim word frequency

The trace norm: enhance the relevance of different modal data with similar relationship.

$$\mathbf{X}_{a}\mathbf{X}_{a}^{T} + \lambda_{1}\mathbf{P} + \lambda_{2}\mathbf{X}_{a}\mathbf{S}^{-1}\mathbf{X}_{a}^{T}\mathbf{U}_{a} = \mathbf{X}_{a}\mathbf{Y}$$
$$\mathbf{X}_{a}\mathbf{X}_{a}^{T} + \lambda_{1}\mathbf{Q} + \lambda_{2}\mathbf{X}_{a}\mathbf{S}^{-1}\mathbf{X}_{a}^{T}\mathbf{U}_{a} = \mathbf{X}_{a}\mathbf{Y}$$

Experimental results continued.

ds	Image query	Text query	Average
PLS	0.2757	0.1997	0.2377
BLM	0.2667	0.2408	0.2538
CCA	0.2655	0.2215	0.2435
GMMFA	0.3090	0.2308	0.2699
GMLDA	0.2418	0.2038	0.2228
	0.3438	0.2674	0.3056

Table 1. Comparison of MAP for different methods

Figure 1. Precision-scope curves of different methods. Left: Image as query, Right: Text as query

Results on Wikipedia image-text data

10 classes, 1300 / 1566 training/testing samples Image: 128-dim bags of SIFT, Text: 10-dim LDA

thods	Image query	Text query	Average
5	0.2402	0.1633	0.2032
M	0.2562	0.2023	0.2293
A	0.2549	0.1846	0.2198
MFA	0.2750	0.2139	0.2445
LDA	0.2751	0.2098	0.2425
FS	0.2798	0.2141	0.2470

Table 2. Comparison of MAP for different methods

Left: Image as query, Right: Text as query