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Abstract—This paper investigates the problem of cross-
modal retrieval, where users can search results across various
modalities by submitting any modality of query. Since the query
and its retrieved results can be of different modalities, how
to measure the content similarity between different modal-
ities of data remains a challenge. To address this problem,
we propose a joint graph regularized multi-modal subspace
learning (JGRMSL) algorithm, which integrates inter-modality
similarities and intra-modality similarities into a joint graph
regularization to better explore the cross-modal correlation
and the local manifold structure in each modality of data. To
obtain good class separation, the idea of Linear Discriminant
Analysis (LDA) is incorporated into the proposed method by
maximizing the between-class covariance of all projected data
and minimizing the within-class covariance of all projected
data. Experimental results on two public cross-modal datasets
demonstrate the effectiveness of our algorithm.

Keywords-cross-modal retrieval; subspace learning; joint
graph regularization;

I. INTRODUCTION

Over the last decade, multimedia content such as text,

image and video has been increasing rapidly on the Internet.

Accordingly, there is an increasing need for efficiently and

effectively searching such multi-modal data. Furthermore,

users may demand the cross-modal retrieval to search results

across various modalities by submitting any modality of

query. Since the search results of the cross-modal retrieval

are rich in multiple modalities, they are more comprehensive

than the results of traditional retrieval methods. And it is

very convenient for users to take any modality of content

at hand as a query. The main difficulty of the cross-modal

retrieval is how to measure the content similarity between

different modalities of data. In this paper, we aim to learn

a discriminative common subspace in which the similarity

between heterogeneous data can be measured.

Several recent approaches for establishing relationships

between data from different modalities generally rely on

Canonical Correlation Analysis (CCA) [1]. Hardoon et al.

[1] and Rasiwasia et al. [2] apply CCA to project text and

images to a common latent subspace for the cross-modal

multimedia retrieval. Hwang and Grauman [3] use kernel

CCA to learn the connections between human-provided tags

and visual features, accounting for the relative importance

of words. CCA is also used in other domains, such as cross-

lingual retrieval [4] and half-face verification [5]. Two other

popular approaches for learning a latent subspace are Partial

Least Squares (PLS) [6] and Bilinear Model (BLM) [7].

Recently, Sharma and Jacobs [6] use PLS to linearly map

images in different modalities to a common subspace for

multi-modal face recognition. Then, Sharma et al. [8] apply

PLS to cross-media retrieval. Chen et al. [9] use PLS to

switch data from one modality to another modal space for

cross-modal document retrieval. In [7], Tannenbaum and

Freeman [7] propose a bilinear model (BLM) to derive a

common space for cross-modal face recognition, and Sharma

et al. [8] apply BLM to text-image retrieval tasks.

However, as we know, CCA, PLS and BLM only use

pairwise information. They do not make use of the struc-

ture information of different spaces and label information.

Recently, Sharma et al. [8] propose a supervised multi-view

feature extraction approach to extend LDA and Marginal

Fisher Analysis (MFA) to their multiview counterpart, i.e.,

Generalized Multiview LDA (GMLDA) and Generalized

Multiview MFA (GMMFA). In GMLDA and GMMFA, the

discriminability is obtained within each view and the cross-

view correlation is obtained only from pairwise information.

Motivated by [8], we propose a joint graph regularized

multi-modal subspace learning (JGRMSL) algorithm for

the cross-modal retrieval. The proposed approach integrates

inter-modality similarities and intra-modality similarities in-

to a joint graph regularization to better explore the cross-

modality correlation among all of data from different modal-

ities and the local manifold structure information. To learn

a discriminative subspace, we adopt the idea of LDA. In the

learnt space, the between-class covariance of all projected

data is maximized, meanwhile the within-class covariance

of all projected data is minimized. Here, it should be noted

that the discriminability is obtained across all modalities

of data, which is very different from that of GMLDA and

GMMFA. In our implementation, the joint graph regularizer,

the between-class covariance and the within-class covariance

are elegantly combined to form a unified formulation, so

they can be optimized simultaneously. Finally, we solve the
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unified formulation to obtain the project vectors by using the

generalized eigenvalue decomposition. Experimental results

on two public cross-modal datasets show the promise of the

proposed approach.
The rest of this paper is organized as follows. In Section

II, we introduce our joint graph regularized multi-modal

subspace learning (JGRMSL) algorithm for cross-modal

retrieval. The experimental results on two public datasets

are presented in Section III. Finally, we conclude the paper

in Section IV.

II. JOINT GRAPH REGULARIZED MULTI-MODAL

SUBSPACE LEARNING

In this section, we present a novel subspace learning algo-

rithm for cross-modal retrieval. Without loss of generality,

we introduce our method in the two-modality case. First, we

formulate the inter-modality similarities and intra-modality

similarities to a joint graph regularization term. Second, we

integrate the joint graph regularizer, the between-class co-

variance and the within-class covariance of all projected data

into a unified formulation, which can be solved efficiently

as a generalized eigenvalue problem. Finally, we extend the

proposed algorithm to the multi-modal case (i.e., more than

two modalities).

A. The Joint Graph Regularization Term
Suppose that we have a collection of data from two

different modalities, i.e., X1 = [x
(1)
1 ,x

(1)
2 , ...,x

(1)
n ] ∈ Rd1×n

and X2 = [x
(2)
1 ,x

(2)
2 , ...,x

(2)
n ] ∈ R

d2×n , where n is the
number of the samples, d1 and d2 are the dimensions of the
two modalities of data, respectively.
We aim to learn two projections to map data from

different modalities into a common latent subspace, where

the similar samples should be as close as possible. And the

local manifold structure should be preserved in the common

latent subspace, which can prevent overfitting and make

the solution smoother. To learn such two projections, we

minimize the following function:

J(u1,u2) =
n∑

i,j=1

zij(u
T
1 x

(1)
i − uT2 x

(2)
j )

2
+
λ1
2

n∑
i,j=1

s
(1)
ij (u

T
1 x

(1)
i − uT1 x

(1)
j )

2

+
λ2
2

n∑
i,j=1

s
(2)
ij (u

T
2 x

(2)
i − uT2 x

(2)
j )

2

(1)

where u1 and u2 are the two projections, λ1 and λ2 are

trade-off parameters, zij and s
(v)
ij (v = 1, 2) are defined as

follows respectively:

zij =

{
1 if x

(1)
i is similar to x

(2)
j

0 otherwise
(2)

s
(v)
ij =

{
1 if x

(v)
i ∈ Nk(x(v)j ) or x

(v)
j ∈ Nk(x(v)i )

0 otherwise
(3)

where x
(1)
i is similar to x

(2)
j if they belong to the same

class, Nk(x
(v)
i ) denotes the set of k nearest neighbors of

x
(v)
i . The first term of the above function utilizes the inter-

modality similarities to enforce the similar samples as close

as possible after the projection. The second and third terms

try to preserve the local manifold structure of each modality

of data in the common latent space.

For simplicity, we rewrite the above function as a joint

graph embedding formulation. Let X be a (d1 + d2) × 2n
matrix representing the multi-modality data, u be a projec-
tion vector of length d1 + d2 and W be a 2n × 2n matrix
in the following form:

X =

[
X1 0

0 X2

]
;u =

[
u1

u2

]
;W =

[
λ1S1 Z

ZT λ2S2

]
(4)

Then, Eq. (1) can be reformulated as:

J(u) =
1

2

2n∑
i,j=1

Wij(u
TX(i) − uTX(j))

2

=
1

2
uTX(D −W )XTu

=
1

2
uTXLXTu

(5)

where D is a diagonal matrix, its entries are column sum of

W , Dii =
∑

jWij . L = D−W is the Laplacian matrix. S1
and S2 indicate the intra-modality similarity, and Z indicates
the inter-modality similarity. If we set S1 and S2 as zero
matrices (i.e., ignore the intra-modality similarity), and set

Z as an identity matrix (i.e., only use pairwise information),
Eq. (5) is equivalent to CCA [10].

We integrate inter-modality similarities and intra-modality

similarities into the joint graph formulation, which better ex-

plores the cross-modality correlation and the local manifold

structure information. We further would like different-class

samples to be mapped far apart while the same-class samples

lie as close as possible. To learn such discriminative common

space, the idea of LDA is incorporated into our algorithm,

which will be detailed in the next subsection.

B. The Objective Function

To learn a discriminative common space, the between-

class covariance of all projected data across both modalities

is maximized, meanwhile the within-class covariance is

minimized. The objective function takes the form:

argmax
u

SB
SW + αJ(u)

⇒ argmax
u

SB
SW + αuTXLXTu

(6)

where α is a trade-off parameter, SB is the between-

class covariance and SW is the within-class covariance.

Let Xv =
{
x
(v)
ik |v = 1, 2; i = 1, ..., c; k = 1, ...n(v)i

}
be

the samples from the vth modality, where x
(v)
ik is the
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kth sample of the ith class from the vth modality.

Yv =
{
y
(v)
ik = uTv x

(v)
ik |v = 1, 2; i = 1, ..., c; k = 1, ..., n(v)i

}
denotes the projected data in the common latent space. SW
is given by

SW =

c∑
i=1

2∑
v=1

n
(v)
i∑
k=1

(y
(v)
ik − μi)(y(v)ik − μi)

T
(7)

where μi =
1
ni

2∑
v=1

n
(v)
i∑
k=1

y
(v)
ik is the mean of the projected

data across both modalities from the ith class and ni is
the number of samples in the ith class. The within-class
covariance can be reformulated in the following form [11]:

SW = [uT1 uT2 ]

(
R11 R12

R21 R22

)[
u1

u2

]
= uTRu (8)

where Rvv′ is defined as follows:

Rvv′ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c∑
i=1

⎛
⎝n

(v)
i∑
k=1

x
(v)
ik x

(v)T
ik − n

(v)
i n

(v)
i

ni
m

(v)
i m

(v)
i

T

⎞
⎠ , v = v′

−
c∑
i=1

n
(v)
i n

(v′)
i

ni
m

(v)
i m

(v′)
i

T
, otherwise

(9)

wherem
(v)
i = 1

n
(v)
i

n
(v)
i∑
k=1

x
(v)
ik is the mean of the samples from

the ith class of the vth modality. And SB is given by

SB =

c∑
i=1

ni(μi − μ)(μi − μ)T (10)

where μ is the mean of all projected data across both

modalities. Similarly, the between-class covariance can be

reformulated in the following form [11]:

SB = [u
T
1 uT2 ]

(
Q11 Q12

Q21 Q22

)[
u1

u2

]
= uTQu (11)

where Qvv′ is defined as follows:

Qvv′ =

(
c∑
i=1

n
(v)
i n

(v′)
i

ni
m

(v)
i m

(v′)
i

T
)

− 1

n

(
c∑
i=1

n
(v)
i m

(v)
i

)(
c∑
i=1

n
(v′)
i m

(v′)
i

)T (12)

Substituting (8) and (11) into (6), the objective function

can be rewritten as

argmax
u

SB
SW + αuTXLXTu

⇒ argmax
u

uTQu

uTRu+ αuTXLXTu

⇒ argmax
u

uTQu

uT (R+ αXLXT )u

(13)

The projection vector u that maximizes the above objec-
tive function is given by the maximum eigenvalue solution

to the following generalized eigenvalue problem:

Qu = λ(R+ αXLXT )u (14)

The proposed method takes the inter-modality similarities

and the intra-modality similarities into consideration through

the joint graph regularization term. Furthermore, it also

obtains good class separation by maximizing the between-

class covariance of all projected data and minimizing the

within-class covariance of all projected data. Using the learnt

projections, we can project data from different modalities

into a common latent space, in which the content similarity

between different modal data can be measured. The proposed

method can be easily extended to the case of more than two

modalities.

III. EXPERIMENTAL RESULTS

We conduct a series of experiments in the two-modality

case here, due to the lack of public datasets containing more

than two modalities of data in the recent literature. We test

the proposed JGRMSL method on two publicly available

datasets - Pascal VOC 2007 [12] and Wiki image-text dataset

[2]. For the cross-modal retrieval problem, we learn two

projections on the training set using the proposed method.

Then, we project the data from all modalities into the learnt

common subspace, in which we can measure the content

similarity between different modalities of data using normal

distance functions. For the test set, we take data from one

modality as the query set, and data from another modality

as the database set.

A. Experimental Settings

We compare the proposed JGRMSL approach with PLS

[6], BLM [8], CCA [2], GMMFA and GMLDA [8] in

terms of common cross-modal retrieval tasks: (1) Image

query vs. Text database, (2) Text query vs. Image database.

Specifically, we use an image as a query to retrieve relevant

text (or tags) from the text database and use a text (or tags) as

a query to retrieve relevant images from the image database.

And the cosine distance is used to measure the similarity of

features.

We evaluate the overall performance of the algorithms

with the mean average precision (MAP) [2]. To compute

MAP, we first evaluate the average precision (AP) of a set

of N retrieved documents by AP = 1
L

∑N
r=1 P (r) · rel(r),

where L is the number of relevant documents in the retrieved
set, P (r) denotes the precision of the top r retrieved

documents, and rel(r) = 1 if the rth retrieved document
is relevant (where ‘relevant’ means belonging to the class

of the query) and rel(r) = 0 otherwise. The MAP is then
computed by averaging the AP values over all queries in the

query set. The larger the MAP, the better the performance.
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Figure 1. Performance of different methods on the Pascal VOC dataset,
based on precision-scope curve (top row) forK = 50 to 1000 and precision-
recall curve (bottom row). Left column: Image query vs. Text database.
Right column: Text query vs. Image database.

In addition, the precision-scope curve [13] and precision-

recall curve [2] are also used to evaluate the effectiveness of

different approaches. The precision-recall curve is a classical

measure of information retrieval performance, but some

researchers [13] consider the precision-scope curve more

expressive for multimedia retrieval. Here, we report results

with both of the two measures.

B. Results on Pascal VOC Dataset

The Pascal VOC 2007 dataset [12] contains a total of 9963

image-tag pairs, which can be categorized into 20 different

classes. The dataset is split into a training set of 5011 image-

tag pairs and a test set of 4952 image-tag pairs. Some images

are multi-labeled, so we select images with only one object,

which results in 2808 training and 2841 testing data. Each

image is represented by a 512-dimensional Gist feature [12],

and each text is represented by a 399-dimensional word

frequency feature [12]. And Principal Component Analysis

(PCA) is used to reduce the dimensions of the original

features here.

Table I shows the MAP scores achieved by PLS, BLM,

CCA, GMMFA, GMLDA and the proposed method (JGRM-

SL) on the Pascal VOC 2007 dataset. It can be observed

that the proposed method outperforms its several counter-

parts for both forms of cross-modal retrieval tasks. This

may be because the proposed method better explores the

inter-modality similarities among all of data from different

modalities through the joint graph regularization, meanwhile

the local manifold structure is preserved to make the solution

smoother. Furthermore, the proposed method obtains the

discriminability across all modalities of data, which is of
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Figure 2. Performance of different methods on the Wiki dataset, based on
precision-scope curve (top row) for K = 50 to 1000 and precision-recall
curve (bottom row). Left column: Image query vs. Text database. Right
column: Text query vs. Image database.

Methods Image query Text query Average

PLS 0.275 0.199 0.237
BLM 0.266 0.240 0.253
CCA 0.265 0.221 0.243
GMMFA 0.309 0.230 0.269
GMLDA 0.242 0.204 0.223
JGRMSL 0.346 0.265 0.305

Table I
MAP COMPARISON ON THE PASCAL VOC DATASET.

benefit to improve the performance.

Further analysis of the results is presented in Figure 1,

which shows the corresponding precision-scope curves and

precision-recall curves of all approaches. The scope (i.e.,

the number of top retrieved items) for the precision-scope

curves varies from K=50 to 1000. The top row shows

the precision-scope curves of our method and its several

counterparts for both forms of cross-modal retrieval tasks,

i.e., Image query vs. Text database (left) and Text query

vs. Image database (right). We observe that compared with

its several counterparts, our method obtains better results

for both tasks. The bottom row shows the performance of

all methods based on the precision-recall curves, and our

method again outperforms other algorithms for both forms

of cross-modal retrieval.

C. Results on Wiki Dataset

The Wiki image-text dataset [2], generated from

Wikipedia’s “featured article”, consists of 2866 image-text

pairs. In each pair, the image is related to a complete text

article, not just a few keywords. Each pair is annotated with a
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Methods Image query Text query Average

PLS 0.240 0.163 0.202
BLM 0.256 0.202 0.229
CCA 0.254 0.184 0.219
GMMFA 0.276 0.213 0.245
GMLDA 0.275 0.210 0.243
JGRMSL 0.304 0.211 0.258

Table II
MAP COMPARISON ON THE WIKI DATASET.

label from the vocabulary of 10 semantic classes. The dataset

is split into a training set of 1300 pairs (130 pairs per class)

and a testing set of 1566 pairs. The representation of the

text with 10 dimensions is derived from a latent Dirichlet

allocation model [14]. And each image is represented by a

128-dimensional SIFT [15] descriptor.

Table II shows the MAP scores achieved by all approaches

on the Wiki dataset. We can observe that for the text query,

the proposed method performs comparably to GMMFA and

GMLDA, but better than the other methods. However, for the

image query, the proposed method outperforms its several

counterparts and achieves the highest MAP for their average.

The corresponding precision-scope curves and precision-

recall curves are plotted in Figure 2. The top row shows

the performance of all methods based on the precision-

scope curves for both forms of cross-modal retrieval tasks.

Similarly, it can be observed that our method performs

comparably to GMMFA and GMLDA for the text query,

and obtains better results than its several counterparts for

the image query. The bottom row shows the precision-recall

curves of our method and its several counterparts, and our

method again obtains similar results for both forms of cross-

modal retrieval.

IV. CONCLUSION

In this paper, we have proposed a joint graph regularized

multi-modal subspace learning (JGRMSL) algorithm to learn

a common latent space, in which the content similarity

between heterogeneous data can be measured. The pro-

posed method explores inter-modality similarities and intra-

modality similarities through a joint graph regularization

term to better explore the cross-modality correlation and the

local manifold structure. To obtain good class separation, the

proposed method maximizes the between-class covariance

of all projected data, meanwhile minimizing the within-

class covariance of all projected data. And the joint graph

regularizer, the between-class covariance and the within-

class covariance are integrated into a unified formulation,

which can be solved as a general eigenvalue problem. Exper-

imental results on two cross-modal datasets have shown that

the proposed method outperformed several state-of-the-art

methods. In the future, we will establish (or seek) a dataset

containing more modalities of data and test our method in

the multi-modal case for the cross-modal retrieval task.
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