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Abstract. The deformable part model (DPM) achieves the best perfor-
mance on some well known datasets in terms of object detection. Liter-
ature springs up to study the success of such a model and hence various
methods are proposed to improve it. Yet one import issue, the sensitivity
to outliers of the hinge loss,1 has not been fully studied. In this paper,
we take two initiatives to handle this problem: 1) we propose to share
samples of one component to others by similarity; 2) we give samples
different weights according to their costs. The model is better trained
with our proposed method, and we boost the performance of the newly
released voc-release 5 [6] model on the challenging VOC 2007 dataset.
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1 Introduction

Object detection aims to find the object bounding boxes of the target class in a
picture, and the deformable part model [3] is one of the most well-known models
in this field. The DPM consists of several components with each component be
a star model which is made of a root filter and several part filters. Usually, each
component has a different aspect ratio2 in order to catch objects of changing
postures, viewpoints and deformations.

Divvala et al. [2] have made a comprehensive evaluation of the DPM and claim
that, rather than the usage of deformation parts, the utilization of multiple com-
ponents seems to contribute the most to achieve a high performance. The reason
is that a single linear hyperplane is not capable of separating the sophisticated
objects from the backgrounds, as the positive samples tend to scatter in the
feature space. Using multiple components is to separate the feature space with
several hyperplanes, each of which in charge of a subset of samples with some
common properties. For example, in the DPM, samples of the same component
have similar aspect ratios, and in Divvala’s work, such samples are close in the
feature space by Euclidian distance. That is to say, it is better for the samples

1 DPM is typically trained by the latent SVM, the loss of which is hinge loss.
2 aspect ratio = height / width
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to have small variations in the same component. Zhu et al. [12] also demonstrate
that ‘clean’3 data can help to improve the performance of a mixture model, and
the ‘clean’ data is obtained by clustering. This viewpoint is also supported by
the poor performed classes of the DPM on the VOC 2007 dataset, e.g., cat.
These classes tend to have more deformations, which lead to a large variation in
each component, thus causing an ill-trained model.

Why does large intra-component variation deteriorate the performance, espe-
cially for the SVM? It is because hinge loss is more sensitive to outliers compared
with the 0-1 loss [11]. The loss suffered is proportional to the distance of a point
to the classification hyperplane. In this condition, the hyperplane is more likely
to turn towards the outliers to compensate the loss caused by them. In this pa-
per, we consider samples which are dissimilar with the majority of the samples
of this component as outliers, and take two initiatives to alleviate the effects of
intra-component impurity caused by them:

1. Sample sharing: Instead of restricting one positive sample to be assigned
exactly to one component, we relax this constraint by allowing a sample to
be used by multiple components according to its similarity with them. Thus
each component has more samples to choose.

2. Outlier ablation: A positive sample is given a different weight for each com-
ponent. The weights of all samples as well as the SVM parameters are jointly
learned by minimizing an augmented loss function. In this way, the samples
which cause large losses will be given small weights (or be abandoned). The
model can thus gain robustness to outliers.

The rest of the paper is organized as follows: we firstly revisit the related work
in section 2. Then we propose our method in section 3. Our experimental results
are reported in section 4 before we draw a conclusion in section 5.

2 Related Work

The deformable part model [3] is the state of art object detector on many
datasets. Papers are published to study its success and lots of improvements
are made. Among them, some [7,10] propose to combine the DPM with other
cues to boost the overall detection results. Some [1,2] propose to improve the
model with carefully initialized components or a learned parts relationship by
using finer annotations.

Specially, Divvala et al. [5] attribute the DPM’s success largely to the usage
of multiple components. They split components by clustering the HOG features
of all samples, replacing the aspect ratio heuristic used by the original DPM.
With a more reasonable component initialization, the samples assigned to each
component become ‘cleaner’, thus the model gets better trained. Zhu et al. [12]
evaluate the influence of a variety of factors to the object detector’s performance
and advocate that we need ‘clean’ data to train our model. They also show that

3 The data is called ‘clean’ when they have small variations.
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clustering all the samples (by K-means) and using samples of the same cluster
to train a separate component will help. They ascribe the bad performance of
the model trained using unpurified data to the hinge loss, which is vulnerable to
outliers. Our approach differs from theirs because we try to start directly from
the defects of the hinge loss by modifying the loss function and generate virtual
data by sample sharing. So our model does not depend on specific component
initialization strategies. Instead, our method is easy to combine with them.

Our work is also related with [8] which tries to share samples between datasets
and [9] which shows the possibility of training an object model with only one
positive sample (yet many negative samples). However, both the final goal and
the means between their methods and ours are different.

3 The Proposed Method

In spite of great achievements the DPM has made, it still performs not so well on
some classes whose instances vary greatly in appearance, e.g., cat, cow. Keeping
the same number of components will make these classes have a larger intra-class
variation than others. However, it will be more complex and slow to inference if
we use a model with more components. Moreover, the total number of instances
hinders us from doing this. So we seek to improve the model without changing
the number of components used. Fortunately, we find in [12] that the sensitivity
of hinge loss might partly responsible for the degraded performance by impure
data. We also find that better trained root filter will benefit the part initialization
process, which is crucial to achieve a good performance by latent SVM. Before
proposing the improving strategies, we firstly review the training process of the
DPM.

3.1 Deformable Part Model Revisited

The Deformable part model is composed of several components where each com-
ponent is a star model which in charge of a specific subset of objects for a class.
Typically, one component includes a root filter and multiple part filters. During
training only the bounding boxes of an object is observed, so the component in-
dex and part location must be inferred by the model. Thus the model is trained
by the latent SVM in a stagewise way which behaves like the EM algorithm.

Stage 1. The positive samples (objects annotated by bounding boxes) are
split into m groups according to their aspect ratios. For each group of positive
samples, we train a separate SVM with randomly chosen negative samples. The
learned weights are used to initialize the root filters of the mixture model.

Stage 2. The mixture model with only root filters is refined by letting each
component choosing positive samples which fit it best. In this step, each positive
sample can only be and must be assigned to one component for retraining.

Stage 3. The deformation parts are initialized from the refined root filter by
an energy coverage rule. Then the new model is retrained on the full dataset with
latent detection and some data-mining techniques for the negative samples.
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3.2 Sample Sharing

In object detection, each object is annotated with a bounding box in an image,
and we call it an object level sample x. In general, x can be used by only one
componentMc, and we denote the sample for the c-th component as xc. However,
the strategies of assigning a sample to a specific component is usually heuristic or
not precise, e.g., aspect ratio, especially in the first stage. What’s more, for some
object classes, samples of different components are similar after an appropriate
transform, e.g., resizing a bus from this aspect ratio to another. If a sample fits
several component models well and we just use it to train one of them, it is a
waste of samples. So we draw samples for all component models from a single
bounding box and this is called sample sharing.

The benefit of sample sharing is that we can increase the number of samples
a component can choose, and it is implemented as follows. For the first stage, we
just resize the sample of this component to another, since all positive samples
are warped. As to the stages afterward, we allow each component to extract a
sample xc from a particular bounding box x. Note that to be selected, xc has to
be the highest scoring hypothesis for this component and satisfies the overlapping
rule. The usage of a sample is determined by the strategy illustrated in the next
subsection.

3.3 Outlier Ablation

For a class of large intra-class variation, it is difficult for a model Mc to account
for all positive samples assigned to it, because hinge loss is rather sensitive to
outliers.4 Putting too much efforts to fit points away from the majority of the
data points will deflect the classification hyperplane to the outliers, thus more
low cost data points are misclassified. Though the total loss decreases, the error
rate, however, increases. Intuitively, those points causing great losses should be
abandoned or be given small weights to prevent them from dominating the total
loss. So instead of trying to fit each positive sample well, we might as well focus
on those representative ones. We now select samples from the candidate samples
set by optimizing the following objective function:

min
β,α

m∑

c=1

np∑

i=1

αc,i�(βc, x
c
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where αc,i ∈ [0, 1] is the weight of xc
i ,
5 and it is initialized to one if xi originally

belongs to component c, otherwise it is set to zero. βc is the parameter for the
c-th component, and m,np, nn are the number of components, positive instances
and negative samples respectively. R(·) is a regularization term which can either
be the l1 norm or the l2 norm. � = max(1 − yiβ

T
c x

c
i , 0) is the hinge loss. λ1, λ

c
2

are hyperparameters which control the weights of the regularization terms.

4 In this paper an outlier is a data point which is far away from the majority of the
data points, not limited to those mislabeled data.

5 xc
i is the shared sample of xi for component c and xi is the i-th object sample. xj,c

is the j-th negative sample for component c.
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In this way, a positive sample will be given a small weight if its cost is very
large. The hyperparameter λc

2 can control the total members of samples used for
each component, which means the bigger the λc

2, the larger amount of samples
will be chosen. Compared with a standard SVM, the slope of the above objective
is much smaller when the weight multiplied is less than one, which makes the
model robust to outliers. One can verify the above objective is an upper bound
of the 0-1 loss when l1 norm is used and λ2 is larger than one. So we opt to take
l1 norm as our regularizer.

The objective is biconvex, which is convex when optimizing one parameter
while fixing the other. Suppose we have trained β and obtained the cost for
each sample. Let us denote the cost as L = (�11, ..., �

m
1 , ..., �1n, ..., �

m
n ), then the

problem becomes: minα LTα +
∑m

c=1 λ
c
2(1− αc) which is a linear programming

problem, and we can get a analytical solution by coordinate descent. The answer
is : αc

i = 0, if lci > λc and αc
i = 1, otherwise. In practice we take the top scoring

p percentage samples to train one component and regard the rest as outliers.
The theoretical support for being able to adopt this alternative measure is that
for the positive sample, the lower the score the higher the loss. If the loss of a
sample xc

i is above λc
2, it will be dropped. It is equal to take the top scoring

ones. This is how outlier ablation takes place. Similar measures have also been
taken by Gaidonet al. [4], however, no theoretical analysis is given in his work.

3.4 DPM Equipped with the Proposed Strategies

We now integrate the two strategies developed above into the DPM. Specifically,
we employ both methods on the first stage. We firstly initialize the root filter
according to the aspect ratio heuristic and score the samples of the candidate
samples set by the trained filters. The top scoring p1% samples are chosen to
retrained the model. On the second and third stage, we just use the outlier
ablation strategy, because in practice, we find that the shared samples always
score lower than the original ones. The percentage of samples used in stage
two and stage three are denoted as p2% and p3% respectively. Usually, we take
p1 < p2 < p3.

4 Experiments

In this section, we firstly give an introduction of the dataset and experimental
settings in 4.1, then we show some primacy results on the cat class of the VOC
2007 dataset6 in 4.2. At last, the results of all classes are reported in 4.3.

4.1 Dataset and Experimental Settings

The PASCAL VOC 2007 dataset is chosen to evaluate our proposed model. It is
a challenging dataset which consists of thousands of images of real world scenes

6 “http://www.pascal-network.org/challenges/VOC/
voc2007/workshop/index.html”

http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html"
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html


Boosting Deformable Part Model by Sample Sharing and Outlier Ablation 423

Table 1. Performance achieved by the 5 models on the VOC 2007 cat class

models M1 M2 M3 M4 M5

AP 11.8 14.2 23.0 24.9 25.5

over 20 classes. The unbalanced distribution of images over classes and large
intra-class variations both make it a tough task.

Our model is composed of 3 components with each component of 8 parts. In
the first stage, the number of samples of a component c to retrain the model
is set to 0.3nc, where nc is the amount of samples assigned to this component
initially. We retrain the model of the first stage twice. The retraining of the
second stage loops for two times with 0.6nc samples. For the third stage, we
firstly use 0.6nc samples for six rounds and use all samples in the next three
rounds. The purpose is to firstly train the appearance filters well with ‘clean’ data
and then use all the samples to learn the parameters of the deformation features.
The hyperparameters p1, p2, p3 are tuned on the validation set. Though setting
different values of these parameters for each class may get better performances,
we use a unified term of value to ensure the fairness of comparison.

4.2 Some Primary Results

Before testing it on all classes, we firstly test several models on the cat class of
the VOC 2007 dataset. The reason for using this class is that cats are flexible
objects and this class is of large intra-class variation, thus it is perfect for testing
our proposed method. We compare the performance of the following methods:

M1: A mixture model with 3 components, and each component just contains
a root filter. It is trained using the framework of voc-release 5 [6], however, no
parts are added. This corresponds to training a DPM which just uses the first
two stages.
M2: A mixture model similar to M1. However, we use the proposed two strate-
gies in the first stage and outlier ablation in the second stage.
M3: The original DPM implemented in voc-release 5 which contains 3 compo-
nents with each component be of 8 parts.
M4: The DPM following the same settings as M3, yet with the proposed two
methods used in the first stage and outlier ablation used in the second stage.
M5: The DPM as described in section 4.1.

We list the average precision (AP) achieved by each model in Table 1, and
visualize the models trained by the first two methods in Fig. 1. From the table,
we can see that our method significantly improve the mixture model, especially
the one without parts. Possible reason is that a simple model doesn’t have the
ability to handle large variations, so the model misclassifies many easy samples in
order to catch the outliers. Our model just focuses on the representative samples,
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Fig. 1. Visualization of the original mixture model (M1, top row) and the one adopted
our improvements (M2, bottom row) on the cat class. Our model has a more clear con-
tour and has large weights on some specific locations. One can see that each component
corresponds to a particular posture.

Table 2. Comparison of the original DPM with the improved model on the full VOC
2007 dataset (better performing ones are in bold). Our model beat the original DPM
on most classes, especially those of large intra-class variation.

class aero bike bird boat bottle bus car cat chair cow table

M3 [6] 33.2 60.3 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1 26.7

M5 33.1 59.0 12.5 17.5 26.2 55.3 57.7 25.5 21.7 27.1 32.6

class dog horse mbike person plant sheep sofa train tv mean

M3 [6] 12.7 58.1 48.2 43.2 12.0 21.1 36.1 46.0 43.5 33.7

M5 13.2 59.7 46.5 42.3 14.0 23.8 35.2 44.3 39.0 34.3

so the performance becomes better. After adding parts, a model can handle more
variations, so the margin becomes smaller. The boosted performance of M4 over
M3 proves that the initialization of part filters given by our model is better than
the original one. With a good initialization, the latent SVM gets better trained.
This can also be illustrated in Fig. 1 as our model learns a much clearer contour
and is quite confident about specific gradient orientations at a fixed location.

4.3 Results on the PASCAL VOC 2007 Dataset

To show the effectiveness of our proposed method, we evaluate it on all classes
of the VOC 2007 dataset, and the results are reported in Table 2. From the
table we can see that our method outperforms the original DPM on 11 classes,
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and the margin is quite large on classes which have large intra-class variations.
However, there still exist some classes on which we fail to beat the original model.
The reason is that training a model is a tradeoff between data purity and the
number of training samples [12], the performance will decrease if we use only
a subset of the ‘clean’ data. Consequently, the mean average precision over all
classes improves by 0.6. This improvement is impressive since the newly released
voc-release 5 is the best object detector when only HOG feature are used.

5 Conclusion

In this paper, we give a theoretical analysis on how data impurity affects the
DPM and propose two strategies, sample sharing and outlier ablation, to alle-
viate the harms caused by it. The sample sharing strategy seeks to enlarge the
candidate samples set size for each component, while the outlier ablation scheme
tries to fit only the representative samples by dropping the outliers. With the
above strategies, models of most classes get better trained, especially those with
large intra-class variation. Currently, however, there are no effective ways to
choose the hyperparameters for sample selection, and we can only determine
them by validation. So in future, we want to develop an explicit purity measure
and find a way to automatically learn the hyperparameters.
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