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Abstract

Saliency is an important factor in feature coding,
based on which saliency coding (SaC) has been pro-
posed for image classification recently. SaC is both ef-
fective and efficient in case of a moderate-scale code-
book. However, empirical studies show that SaC will
lose its superiority as the codebook size increases. To
address this problem, we propose a group coding strat-
egy, wherein the latent structure information of a code-
book is explored by grouping neighboring codewords
into a group-code. We apply group coding to SaC
and derive the group saliency coding (GSC) scheme.
Thorough experiments on different datasets show that
GSC consistently performs better than SaC, and also
outperforms other popular coding schemes, e.g., local-
constrained linear coding, in terms of both accuracy
and speed.

1. Introduction

Image classification has been one of the most ac-

tive research areas in computer vision in the recent lit-

erature. Among various approaches to this purpose,

the bag-of-words (BoW) model [2] is probably the

most widely-used one. As illustrated in Figure 1 (a),

there are basically four steps in the BoW model, i.e.,

feature extraction, coding, pooling, and classification.

Among these steps, coding has become one of the

hottest topics in image classification recently, and vari-

ous coding schemes have been proposed. Probabilistic

schemes such as hard voting (HV) [2] and soft voting

(SV) [9] work well with a small-scale codebook. High-

dimensional schemes, such as Fisher kernel coding [8]

and super-vector coding [12] achieve impressive per-

formance. However, a large quantity of memories are

required for them. Reconstruction-based schemes also

achieve high performance, but usually bear inefficiency

in calculation, e.g., sparse coding [11]. Some of them
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Figure 1. (a) Basic pipeline of the BoW
model. (b) Motivation of this work.

cut down the computational cost by approximate algo-

rithms, e.g., local-constrained linear coding (LLC) [10],

which however inevitably introduces reconstruction er-

rors, as detailed in [5].

The idea behind saliency coding (SaC) [5] is that a

visual codeword should receive a strong response if it is

much more similar with a feature than other codewords.

SaC performs much better than classic probabilistic

schemes and runs much faster than reconstruction-

based schemes [5]. Nevertheless, SaC will lose its su-

periority in performance when the codebook size is rel-

atively large. We attribute this problem to the hard-

assignment strategy adopted in SaC, i.e., a feature is

represented only by its nearest neighboring codeword.

As a result, the feature’s representation tends to be sup-

pressed during max pooling. Consider the example in

Figure 1 (b), wherein fi denotes a local feature, cj de-

notes a visual codeword, dij denotes the distance from

fi to cj , Sij denotes the response of fi to cj in SaC,

and S′
ij denotes the response in our scheme to be de-

scribed in this paper. The response of f1 to c2 (S12)

is suppressed by the response of f2 to c2 (S22) (since

S12 < S22), which results in the absence of f1’s repre-

sentation. If multiple representations are generated for

each feature, such side effect of suppression can be al-
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leviated. For example in Figure 1 (b), even though the

response of f1 to c2 (S′
12) is suppressed by the response

of f2 to c2 (S′
22), the representation of f1 can still be

found on c1 (S′
11).

It seems like that the above problem can easily be

solved with soft-assignment. However, according to the

original definition of SaC, the saliency degree of a fea-

ture only makes sense on its nearest neighboring code-

word. As a result, soft-assignment is not applicable in

SaC. To cope with this problem, we propose to treat a

group of neighboring codewords as a single codeword,

i.e., group-code, and perform group coding. A feature

can thus be represented by the codewords included in

group-codes. Experimental results on various datasets

show that GSC outperforms SaC and LLC, which veri-

fies the effectiveness of group coding.

2. Methods

In this section, we suppose that there are N code-

words in the codebook C, denoted by cj respectively,

and that M local features, denoted by fi, are extracted

densely from an image.

2.1 Saliency coding

The main idea of saliency coding (SaC) is to encode

local features according to the relative positions of fea-

tures and codewords, as explained in Section 1. Let si
denote fi’s coding result, and φ(fi) denote the saliency

degree. The original definition of SaC can be written

as [5]:

si(j) =

{
φ(fi) if j = argmin

j
‖fi − cj‖2

0 else
(1)

φ(fi) =

KS∑
t=2

(‖fi − c̃t‖2 − ‖fi − c̃1‖2)
K∑
t=2

‖fi − c̃t‖2
(2)

wherein KS denotes the number of codewords involved

in calculating the saliency degree for each feature, and

c̃t denotes fi’s t-th nearest neighboring codeword, e.g.,

c̃1 is the nearest one.

Previous studies [5] show that SaC holds superiority

in both effectiveness and efficiency. Nevertheless, there

exists a limitation resulted from the hard-assignment

strategy, as mentioned in Section 1. Moreover, it is im-

possible to derive a soft-assignment version consider-

ing that the saliency degree of a feature in SaC only

makes sense on the feature’s nearest neighboring code-

word. Consequently, it is necessary to introduce a new

strategy to enable each feature to vote for multiple code-

words.

2.2 Group coding

The main idea of group coding is to treat several

neighboring codewords as a single codeword, namely,

a group-code. As illustrated in the second row of Fig-

ure 2, c1 and c2 comprise a group-code for fi, i.e., cfi,2,

where the subscript 2 means that there are two code-

words embedded here. Codewords in the same group-

code will act as an integrated unit and receive the same

response during a normal coding process. Such coding

process will be repeated several times to cover different

group-code sizes, and multiple coding results are ob-

tained. Finally, we integrate these results to generate

the output of the coding stage.

Figure 2. Illustration of group coding.

We mathematically obtain fi’s final coding output si
with:

si = max
k=1,...,K

s
(k)
i (3)

wherein K denotes the maximum group-code size that

should be considered, k = 1, . . . ,K denotes different

group-code sizes, and s
(k)
i denotes a normal coding re-

sult obtained with the group-code size k (to be detailed

in the next subsection).

It is noteworthy that group coding is not an analogue

of soft-assignment, even if they look similar. In the case

of group coding, different number of neighboring code-

words are grouped together and act as an integrated unit.

It means that we are exploring the latent structure infor-

mation that some neighboring codewords are potentially

synonymous with each other. This structure information

can not be sufficiently reflected by the soft-assignment

strategy.

2.3 Group saliency coding

As mentioned in Section 1, we perform group coding

for SaC to alleviate the side effect of suppression. Let
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s
(k)
i denote fi’s coding result obtained with the group-

code size k, and φ(k)(fi) denote the revised saliency de-

gree. The group saliency coding (GSC) scheme is de-

fined as:

s
(k)
i (j) =

{
φ(k)(fi) if cj ∈ g(fi, k)
0 else

(4)

φ(k)(fi) =
K+1−k∑

t=1

(‖fi − c̃k+t‖22 − ‖fi − c̃k‖22) (5)

wherein g(fi, k) denotes fi’s k nearest neighboring

codewords, and K is the maximum group-code size.

The main idea of GSC is to measure the relative po-

sitions between fi’s group-codes and other codewords.

With different k, there are consistently K + 1 neigh-

boring codewords considered for each feature. The k
nearest ones of them are taken as the group-code, and

the k-th nearest codeword is the representative of the

group-code for calculating the saliency degree. To en-

sure the comparability among K different φ(k)(fi)’s
(k = 1, . . . ,K), we remove the normalization opera-

tion. We will obtain K coding results with Eq.(4), and

integrate them with Eq.(3) to get the final coding output

of fi.

3. Experimental results

3.1 Datasets and experimental settings

We perform a series of experiments on three datasets,

i.e., 15 Scenes [6], Caltech 101 [4] and PASCAL

VOC 2007 [3]. On 15 Scenes, we randomly pick out

100 images from each category for training, and keep

the remaining images for testing [6]. On Caltech 101,

we randomly pick out different number (10, 20 and 30)

of images from each category for training, and pick out

at most 50 images from each category for testing [4].

The experiments are repeated for 10 times. Average

classification accuracy and standard deviation are re-

ported. On VOC 2007, we follow the official exper-

imental settings [3] and report the mean AP (average

precision).

SIFT descriptors [7] are densely extracted every four

pixels on three scales, i.e., 16×16, 24×24 and 32×32
in pixels. Codebooks are trained by k-means cluster-

ing. SPM [6] is performed on three levels, i.e., 1 × 1,

2 × 2 and 3 × 1. Linear SVMs are trained as classi-

fiers. We re-implement the coding schemes in the same

framework to achieve comprehensive comparison. As a

result, there might be some slight differences between

our results and those reported by the original authors.

3.2 Experimental results and analysis

The maximum group-code size K in Eq.(5) is an im-

portant parameter. We first conduct experiments with

different K on 15 Scenes, as reported in Figure 3. In

an overall view, GSC achieves better performance as K
increases, until K = 5. This tendency is basically the

same on the other two datasets. Consequently, in the re-

maining experiments, we keep the setting that K = 5.

Figure 3. Classification results obtained
with different K on 15 Scenes.

There are many coding schemes in the recent litera-

ture. LLC was one of the state-of-the-art schemes [10],

and SaC is our baseline. The recent state-of-the-art

schemes such as FK [1] and SVC [12] are not con-

sidered here. They are memory-consuming and dense,

while LLC and GSC are compact and sparse. There-

fore, we compare GSC with LLC and SaC on 15 Scenes,

Caltech 101 and VOC 2007 respectively. In SaC, KS

denotes the number of codewords involved in measur-

ing the saliency degree, while in LLC, KL denotes the

number of codewords that each feature is reconstructed

with. Empirically, we keep KS = 5 and KL = 5 in our

experiments [5, 10].

The results on different datasets obtained with differ-

ent coding schemes are listed in Table 1. The numbers

in parenthesis stand for different sizes of the training set

for Caltech 101 [4]. GSC consistently outperforms SaC.

In particular, GSC performs better than SaC by 2.0% at

most on VOC 2007. These results verify the effective-

ness of the proposed group coding strategy. Besides,

GSC also performs better than LLC. We further increase

the codebook size to 65,536 and perform experiments

on the VOC 2007 dataset. The category-wise results are

listed in Table 2, from which we can see that in terms

of a large-scale codebook, GSC can achieve even bet-

ter performance. As the codebook size increases, the

reconstruction errors of LLC are alleviated. In this sit-
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Category aeroplane bicycle bird boat bottle bus car cat chair cow

LLC 71.7 63.3 48.9 68.1 27.4 67.1 77.0 59.9 55.4 47.2
SaC 70.8 63.4 45.7 66.5 26.6 64.0 76.3 56.4 53.8 46.3

GSC 73.2 65.7 51.2 68.3 30.3 67.6 78.1 60.7 55.1 49.2

Category dinningtable dog horse motorbike person pottedplant sheep sofa train tvmonitor mean AP

LLC 51.9 44.6 76.8 66.4 83.6 27.4 47.9 54.5 76.1 54.2 58.5
SaC 46.6 43.4 75.6 64.4 82.6 26.4 43.5 50.9 75.3 51.7 56.2

GSC 49.4 46.1 76.9 67.6 83.9 28.4 45.6 54.7 76.5 53.3 59.1

Table 2. Class-wise comparison on PASCAL VOC 2007. The codebook size is 65,536.

Dataset Codebook size LLC SaC GSC

15 Scenes
2048 81.4± 0.4 81.5± 0.3 81.8± 0.4
8192 83.0± 0.3 82.5± 0.5 83.2± 0.4

Caltech 101 (10)
2048 58.4± 0.6 56.9± 0.5 58.9± 0.7
8192 60.8± 0.7 57.9± 0.4 61.0± 0.7

Caltech 101 (20)
2048 66.1± 0.7 65.3± 0.9 66.8± 0.7
8192 69.0± 0.8 66.6± 0.8 69.2± 0.9

Caltech 101 (30)
2048 70.0± 1.5 69.4± 1.0 71.0± 1.2
8192 72.6± 1.4 71.1± 1.1 73.4± 1.2

VOC 2007

2048 49.3 49.8 51.6
8192 55.2 54.8 56.2
32768 57.9 56.4 58.4

Table 1. Comparison of different coding
schemes on different datasets.

uation, we can perfectly recover original local features

from an encoded LLC representation. In contrast, GSC

is not able to do so since it is derived based on saliency.

This is probably one of the reasons why there are four

categories on which LLC outperforms GSC in Table 2.

Efficiency. The computational complexity of GSC

is O(K), which is the same as SaC, i.e., O(KS) [5],

while the one of LLC is O(K2
L) [10].

4. Conclusion and future work

In this paper, we have proposed the group coding

strategy and applied it to SaC. The resulting group

saliency coding (GSC) scheme has shown its superior-

ity to SaC. GSC also outperforms other popular coding

schemes such as LLC, requiring lower computational

cost.

It should be noted that group coding can also coop-

erate with other coding schemes such as hard voting,

and even with multiple voting schemes such as soft vot-

ing. Besides, the local structure of codebooks might be

better explored by methods other than the K neighbors

strategy. We will cover these aspects in our future work.
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