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Abstract. Spatial information in images is considered to be of great im-
portance in the process of object recognition. Recent studies show that
human’s classification accuracy might drop dramatically if the spatial
information of an image is removed. The original bag-of-words (BoW)
model is actually a system simulating such a classification process with
incomplete information. To handle the spatial information, spatial pyra-
mid matching (SPM) was proposed, which has become the most widely
used scheme in the purpose of spatial modeling. Given an image, SPM
divides it into a series of spatial blocks on several levels and concate-
nates the representations obtained separately within all the blocks. SPM
greatly improves the performance since it embeds spatial information
into BoW. However, SPM ignores the relationships between the spatial
blocks. To address this problems, we propose a new scheme based on
a spatial graph, whose nodes correspond to the spatial blocks in SPM,
and edges correspond to the relationships between the blocks. Thorough
experiments on several popular datasets verify the advantages of the
proposed scheme.

1 Introduction

Image classification has become one of the most active topics in the recent litera-
ture. In particular, the bag-of-words model (BoW) [1] has shown its effectiveness
and applicability in terms of scene and object classification. In BoW, the occur-
rences of visual words are counted within the local feature set of each image
respectively to generate a histogram, which is treated as a representation of the
original image. Afterwards, we can just match the representations to figure out
the similarity of two images, and furthermore to tell if they are of the same
category.

In the original BoW model, the spatial information of visual words is not
taken into account, which conflicts with our intuition and experience. We can
better perceive the real world with the spatial information. A recent psycho-
logical study on recognizing jumbled images [2] demonstrates the importance
of (global) spatial information and calls for research efforts in spatial modeling.
In [2], an original image is divided into small blocks, which are then shuffled up
randomly to obtain a jumbled image. For reference, this process is illustrated in
Figure 1. The spatial information of visual words is missing in a jumbled image.
As a result, subjects’ classification accuracy might drop from 80% to 20% [2],
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Fig. 1. An original image (left) and the corresponding jumbled image (right).

which shows the influence of spatial information in the classification process.
The original BoW model, without any spatial information involved, simulates
human’s behavior in recognizing the jumbled image. In this way, we can hardly
anticipate a good classification result.

Among all the efforts in spatial modeling, the spatial pyramid matching
(SPM) scheme [3] is probably the most widely applied one. In SPM, an im-
age is regularly divided into various blocks on several levels, as illustrated in
Figure 2. The occurrences of visual words are then counted within these blocks
respectively. Accordingly, we should match the representations from multiple
corresponding blocks to find out if two images are of the same category. SPM
can greatly improve the performance of BoW, and at the same time, it is easy
to implement and of acceptable extra computational cost. As a result, SPM has
already become an indispensable part in the BoW model.

In spite of the advantages, the blocks in SPM are treated independently. Two
neighboring blocks are probably related considering that they are located close to
each other, as illustrated in Figure 2. The spatial information of an image can be
better reflected if the relation of spatial blocks are taken into account. However,
the relation of blocks is completely ignored in SPM. To solve this problem, we
propose a spatial modeling scheme based on a directed graph in this paper. In
our scheme, blocks in SPM are represented by the nodes, and the relation of
blocks which is missing in SPM is represented by the edges.

The main contribution of this paper is that we propose to embed the spatial
information of an image into a spatial graph, by generating a series of histograms
corresponding to nodes or edges of the graph. The proposed scheme is more
flexible than SPM. Thorough experiments on 15 Scenes [3] and PASCAL VOC
2007 [4] show that this new scheme achieves better performance compared with
SPM.

The remainder of this paper is organized as follows: Section 2 reviews the
related work. Section 3 first introduces the original BoW model and its extension
with SPM, and then proposes our scheme. Section 4 first explains the implemen-
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Fig. 2. SPM with 21 blocks on three levels: 1× 1, 2× 2 and 4× 4. Middle: Bin 1 and
Bin 2 are related to each other since they are neighbors, and so do Bin 2 and Bin 4.
Right: More examples of relation between blocks.

tation details, and then reports and analyzes the experimental results. Finally,
Section 5 concludes this paper.

2 Related work

There is a great deal of work which takes the spatial information of visual words
into account in the recent literature. They can be grouped into three major
categories according to the adopted strategy for embedding spatial information.

The first is to embed spatial information into extended visual codes. Boureau
et al. [5] embed local spatial information into macro-features which are extracted
densely by concatenating small spatial neighboring local features. Morioka and
Satoh [6] embed the relative spatial information of two visual words into a lo-
cal pair-wise code. The pair-wise codes are obtained by clustering on pair-wise
features extracted densely, each of which is a concatenation of two nearby local
features. They further unify their work with the proximity distribution kernel [7]
in [8], in order to combine the strengths of both, i.e., compactness and scale in-
variance. This kind of schemes focus on the local spatial information, but ignore
the global spatial information.

The second is to express spatial information with an independent representa-
tion. The image-level representation of an image is the concatenation of a spatial
section and an occurrence section obtained with the original bag-of-words (BoW)
model [1]. Krapac et al. [9] propose to capture the spatial information of visual
words with Fisher vectors. No matter how many dimensions a visual word owns
(e.g., a visual word corresponds to a 129-dimensional vector in super-vector cod-
ing (SVC) [10]), the dimension of its spatial Fisher vector is the same. However,
the performance is only comparable to the existing state-of-the-art schemes. The
superiority of their scheme is thus about saving the memory and computational
cost rather than improving the performance. Moreover, this superiority is true
only if a high-dimensional coding scheme such as SVC is adopted.
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The third is to pool spatially similar local features together to generate sev-
eral representations and concatenate them, which is often referred to as spa-
tial pooling. As a classic representative of the spatial pooling strategy, the spa-
tial pyramid matching (SPM) scheme [3] is currently the most successful one,
which is both effective and easy to implement. There are also some extensions of
SPM. Harada et al. [11] train a discriminative spatial pyramid by optimizing the
weights of blocks. Wang et al. [12] adopt a shape-context-like division strategy
with respect to 9 fixed reference points. Yang et al. [13] propose a co-occurrence
kernel for image matching instead of the original kernel adopted in SPM. Their
model acts better than SPM on their land-use dataset, but on other popular
datasets such as 15 Scenes [3], it only achieves a modest improvement. Our
scheme proposed in this paper is also an instance of the spatial pooling strategy.
However, different from the above three studies, we focus on embedding spatial
information into a directed graph.

To build up an integrated BoW model, coding is an indispensable part. Re-
cently, many researchers make great efforts in developing better coding schemes.
Generally, the existing coding schemes can be grouped into three categories,
namely, probabilistic schemes, e.g., hard voting (HV) [1], soft voting [14] and
super-vector coding (SVC) [10], reconstruction-based schemes, e.g., sparse cod-
ing [15] and locality-constrained linear coding (LLC) [16], and saliency-based
schemes, e.g., saliency coding [17, 18]. Probabilistic schemes, cooperating with
average pooling (or weighted average pooling for SVC [10]), and reconstruction-
based schemes, cooperating with max pooling, often show different characteris-
tics in various aspects. Saliency-based schemes usually show similar character-
istics with reconstruction-based schemes. Accordingly, we conduct experiments
with SVC, as a representative of probabilistic schemes, and LLC, as a represen-
tative of reconstruction-based schemes in this paper.

3 Methods

Methods in this section mainly refer to the pooling stage in the BoW model. In
other words, with the output of the coding stage, the question is what we should
do to generate the final image-level representation. In the following, we first
introduce the original BoWmodel, and then its extension with SPM. Afterwards,
we will propose our scheme.

3.1 BoW

Suppose that the codebook consists of K visual words, denoted by cj respec-
tively. For an image, local features are extracted either with a feature detector
or just by dense sampling. We assign each of these features to a visual word and
record the occurrences of each visual word. Thus, a K-bin histogram is obtained
for each image.

Let X and Y denote two images, and x and y denote their normalized his-
tograms respectively. Supposing that we extract MX local features from X,
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denoted by fXi respectively, we can calculate x by:

x = ZX
k×MX

· IXMX
(1)

wherein ZX
K×MX

is a matrix, each row of which (i.e., zXi ) corresponds to the

coding output of the i-th feature, and IX is a column vector whose entries are
all one. In the case of HV, zi is a vector with only one non-zero element, e.g., if
cj is the nearest code to fXi , the j-th element of zi will be one while the rest of
its elements will be zero. Similarly, y is defined as:

y = ZY
K×MY

· IYMY
. (2)

We can thus predict the similarity between the two images just by calculating
the similarity between x and y. Typically, it can be defined as the intersection
kernel:

κI = min(x,y)T · IK . (3)

Another common option is the linear kernel:

κL = xT · y. (4)

3.2 BoW with SPM

No spatial information of visual words is considered in the original BoW model.
To address this problem, SPM is proposed. The main idea of SPM is to match
two images within a series of blocks on several levels. Those features matched
on a high-resolution level will be excluded in matching on the following low-
resolution levels.

The original definition of the SPM kernel is a little complicated [3], but it
can be simply rewritten as the inner product of a weighting vector and the
concatenation of every matching result within a separate block:

κ′
I = min(x,y)T ·w

x = [xT
0,1,x

T
1,1, . . . ,x

T
1,B(1), . . . ,x

T
L,1, . . . ,x

T
L,B(L)]

T

y = [yT
0,1,y

T
1,1, . . . ,y

T
1,B(1), . . . ,y

T
L,1, . . . ,y

T
L,B(L)]

T

w = [w0, w1, . . . , w1, . . . , wL, . . . , wL]
T

(5)

wherein xl,b and yl,b denote the histograms of X and Y obtained within Bin b on
Level l, L is the number of levels, B(l) denotes a function returning the number
of blocks on Level l, w denotes the weighting vector and wl denotes the weight
on Level l. xl,b and yl,b are the product of a coding matrix and a mask vector
like:

xl,b = ZK×MX
· vl,b. (6)

Different from the original BoW model, spatial information of local features
is required in SPM. Suppose that MX local features are extracted from X as
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(fXi ,pX
i ), wherein pX

i denotes the location of fXi in the image. The i-th element
of vl,b can be defined as:

vl,b(i) =

{
1 if h(pX

i , l) = b
0 else

(7)

wherein h(pX
i , l) is a function returning an index ∈ {1, 2, . . . , B(l)} denoting the

block in which pX
i lies on the specified Level l. Accordingly, the linear kernel

with SPM is:
κ′
L = xT · (y ⊙w) (8)

wherein ⊙ denotes the element-wise multiplication.

3.3 Our Scheme

Our scheme is to match images with their spatial information embedded in a
directed graph, so as to reflect the relation between neighboring blocks. The
main idea is to represent an image with a series of histograms corresponding to
the nodes and edges in a directed graph, as illustrated in Figure 3.

Fig. 3. A comparison between SPM and our schemes on Level 1. xj
n(l,n): the j-th

element of xnode(l,n). x
j
e(l,n,e): the j-th element of xedge(l,n,e). See the text for details.

In our scheme, the image-level representations are defined as:

x = [xT
0,1,x

T
1,1, . . . ,x

T
1,N(1), . . . ,x

T
L,1, . . . ,x

T
L,N(L)]

T

xl,n = [xT
node(l,n),x

T
edge(l,n,1), . . . ,x

T
edge(l,n,E(l,n))]

T
(9)

wherein xnode(l,n) denotes the histogram of X corresponding to Node n on
Level l, xedge(l,n,e) denotes the histogram corresponding to the edge from Node n
on Level l to its e-th neighbor, N(l) denotes a function returning the number
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of nodes on Level l and E(l, n) denotes a function returning the outdegree of
Node n on Level l. xnode(l,n) and xedge(l,n,e) are each a product of the coding
matrix and a mask vector:

xnode(l,n) = Zn×mX · ul,n (10)

xedge(l,n,e) = Zn×mX
· ul,n,e. (11)

The i-th element of ul,n and ul,n,e can be respectively defined as:

ul,n(i) =

{
1 if hnode(p

X
i , l) = n

0 else
(12)

ul,n,e(i) =

{
1 if hedge(p

X
i , l, n) = e

0 else
(13)

wherein hnode(p
X
i , l) is an index ∈ {1, 2, . . . , N(l)} denoting the spatially near-

est node to pX
i on the specified Level l, and hedge(p

X
i , l, n) is an index ∈

{1, 2, . . . , E(l, n)} denoting the nearest edge to pX
i among all the edges origi-

nated from Node n on Level l.

The above explanations are presented supposing that the sum (average) pool-
ing scheme is adopted. However, there will be no difficulty in extending the for-
mulations for weighted average pooling and max pooling. We omit the details
since the extension is straightforward.

It is worthy noting that we introduce the representations of edges (xedge(l,n,e))
to reflect the relation between neighboring nodes. From this point of view, ul,n,e

defined in Equation (13) is not appropriate. What we want is to reflect the re-
lation between Node n and its neighbors, however, only the features belonging
to Node n are involved. To deal with this problem, we introduce the soft assign-
ment mechanism into this process. In this way, ul,n and ul,n,e turn into weighting
vectors. We will discuss the details in Section 4.1.

4 Experimental results

4.1 Implementation details

To implement our scheme, there are two main aspects that we must handle with.
The first one is how to build up a directed graph, and the second one is how to
assign local features to the nodes and edges in these graphs.

To build up the graph, we must first locate the nodes denoting different
blocks. In this paper, we simply set the center of each block as a node p(l,n), i.e.,
the location of Node n on Level l. Afterwards, we assign an edge between two
nodes on the same level if their corresponding blocks are neighbors, as illustrated
in Figure 3.

Given a feature in an image, we should decide which node and edge it should
be assigned to, as defined in Equations (12) and (13). As a common choice, we
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can conduct the node assignment with respect to the spatial Euclidean distances
between features and nodes. Thus, hnode in Equations (12) can be defined as:

hnode(p
X
i , l) = argmin

n=1,...,N(l)

dnode(p
X
i , l, n)

dnode(p
X
i , l, n) =

∥∥pX
i − p(l,n)

∥∥
2
.

(14)

We define hedge in Equation (13) as:

hedge(p
X
i , l, n) = argmax

e=1,...,E(l,n)

dedge(p
X
i , l, n, e)

dedge(p
X
i , l, n, e) = (

−−−−→
Pl,nP

X
i ·

−−−−−−−−→
Pl,nP

X
neighbor)−−−−→

Pl,nP
X
i = pX

i − p(l,n)
−−−−−−−−→
Pl,nP

X
neighbor = p(l,neighbor(l,n,e)) − p(l,n)

(15)

wherein neighbor(l, n, e) is a function returning the index ∈ {1, 2, . . . , N(l)} of
the e-th neighbor of Node n on Level l. Here, we adopt the dot product as the
distance between a feature and an edge. Compared with the spatial distance
from a feature to a edge, the features which are close to a node will be smoothly
assigned to the node’s edges. As mentioned in Section 3.3, soft assignment is
required for the motivation of our scheme. Fortunately, the treatment is in hand
considering the distance, i.e., dnode in Equation (14), and the similarity, i.e., dedge
in Equation (15) have already been defined. We apply the Gaussian function for
soft assignment:

d′node = e−λnd
2
node (16)

d′edge =

{
e−λe(dedge−0.5)2 if dedge < 0.5
1 else

(17)

wherein λn and λe are two parameters. And the elements of the weighting vectors
in Equations (10) and (11) are obtained after normalization:

ul,n(i) =
d′node(p

X
i , l, n)∑

n=1,...,N(l)

d′node(p
X
i , l, n)

(18)

ul,n,e(i) =
d′edge(p

X
i , l, n, e)∑

e=1,...,E(l,n)

d′edge(p
X
i , l, n, e)

· ul,n(i). (19)

Obviously,

ul,n(i) =
∑

e=1,...,E(l,n)

ul,n,e(i)

which means that
xnode(l,n) =

∑
e=1,...,E(l,n)

xedge(l,n,e).
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In other words, xnode(l,n) and xedge(l,n,e) (e = 1, . . . , E(l, n)) are linearly corre-
lated. Therefore, we can remove xnode(l,n) from the final representation without
losing useful information. Notably, this is not always true as the strategy for
generating the two weighting vectors varies.

4.2 Datasets and experimental settings

We evaluate our scheme on the 15 Scenes dataset [3] for scene classification, and
the PASCAL VOC 2007 dataset [4] for object classification. In the 15 Scenes
dataset, there are 4, 485 images of natural scenes in total, belonging to 15 cate-
gories (e.g., bedroom, CALsuburb and industrial), each of which consists of 200
to 400 images. In the PASCAL VOC 2007 dataset, there are 9, 963 images in
total, belonging to 20 categories, e.g., bird, car and person. Images in VOC 2007
carry obvious variation in scale, illumination, viewpoint, pose, occlusion and so
on. Generally speaking, the tendency of the resulting curves is similar on differ-
ent VOC datasets, since they are of high overlap of the collected images (nearly
50% between VOC 2007 and VOC 2011). Most works in the recent literature re-
port their results on VOC 2007 instead of the newer datasets because the labels
on test images are fully released. For the sake of conveniences in evaluation and
comparison with related work, we follow this policy.

For 15 Scenes, we follow the evaluation settings proposed in [3], i.e., randomly
pick out 100 images from each category for training, and keep the remaining
images for testing. We repeat the evaluation for 10 times and report the average
classification accuracy and the standard deviation. For VOC 2007, we follow the
official evaluation rules, i.e., train models on the trainval set, test on the test
set, and report the mean average precision (mAP).

SIFT descriptors [19] are densely extracted every four pixels for all images
on three scale, i.e., 16 × 16, 24 × 24 and 32 × 32 in pixels. The local features
are L2-normalized as preprocessing. Codebooks are trained by the k-means clus-
tering. Lib-linear SVMs [20] are trained as classifiers. For comparison, SPM [3]
is performed on three levels, i.e., 1 × 1, 2 × 2 and 3 × 1. Accordingly, we build
up graphs on three levels with the same setting. We do not follow the origi-
nal SPM configuration in [3] for two reasons: first, the used configuration is of
lower dimension and performs as well as or even better than the original one;
second, there is no need to worry about the compatibility issues between the
3 × 1 level and the intersection kernel, since LLC and SVC are both designed
for linear SVM. Cross-validation on training set shows that the optimal soft
assignment parameters are relatively insensitive to the variation of code sizes
and evaluation datasets. However, the optimal parameters tend to vary if the
adopted coding scheme is different. Thus, we fix λn and λe for different kinds of
coding schemes in our experiments. For SVC, (λn, λe) = (32, 8), which are also
appropriate for other probabilistic schemes. For LLC, (λn, λe) = (16, 8), which
are also appropriate for other reconstruction-based schemes.

It is worthy noting that we implement a general framework of the BoW
model to ensure fair and comprehensive comparison. The results of BoW, SPM
and our scheme reported in this paper are all obtained with this framework. As
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a result, there might be discrepancies between our results and those reported by
the original authors.

4.3 Basic results

Table 1. Classification results obtained with LLC on 15 Scenes. The best results for
different code sizes are shown in bold. Note that the last two rows are both on Level 2.
See the text for details.

Code size: n = 16 n = 512 n = 8192

L Single level Pyramid Single level Pyramid Single level Pyramid

0 (1× 1) 35.0± 0.6 64.5± 0.6 77.1± 0.7
1 (2× 2) 58.0± 0.6 58.7± 0.5 77.1± 0.6 77.4± 0.6 82.7± 0.4 83.0± 0.4
2 (3× 1) 55.2± 0.5 61.2± 0.6 76.1± 0.5 78.3± 0.7 82.4± 0.4 83.3± 0.3
2 (4× 4) 61.1± 0.5 61.7± 0.3 76.7± 0.3 77.7± 0.4 80.4± 0.2 82.5± 0.2

To test the configurations of blocks and levels, we conduct a series of exper-
iments with different combinations of levels. The detailed results are reported
in Table 1. Only the results obtained with LLC on 15 Scenes are reported due
to limited space, since the results for different coding schemes or datasets are
basically the same. Results obtained with the representations on separate levels
are also attached to show the contribution of different levels. Note that the last
two rows are both on Level 2. Thus, the columns labeled by Pyramid in Row 3
denote the configuration: 1× 1, 2× 2 and 3× 1, and those in Row 4 denote the
configuration: 1× 1, 2× 2 and 4× 4.

The improvement in performance shown in Table 1 agrees with our anticipa-
tion. When L = 0, our scheme becomes an analogue of the original BoW model,
where no spatial information is involved. When L > 0, the performance improves
as L increases, because finer spatial information is embedded. However, simply
increasing the number of blocks does not always lead to better results. For ex-
ample, the performance listed in Row 4 denoting the 4×4 level is inferior to the
performance listed in Row 3 denoting the 3 × 1 level. The results demonstrate
that our configuration is appropriate.

4.4 Comparison with SPM

We report the classification results of our scheme and SPM in Figure 4 for
comparison on separate levels. The results of the original BoW model are also
depicted for reference, and it again demonstrates the importance of spatial in-
formation. There are obvious gaps between SPM L1 and Graph L1, and between
SPM L2 and Graph L2. Some researchers would argue that the dimension of the
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Fig. 4. Classification results obtained with representations on different levels separately
on 15 Scenes. L1: 2× 2. L2: 3× 1.

Table 2. Classification results with LLC and different code sizes on VOC 2007.

Code size BoW SPM Ours

16 16.0 24.0 27.0
128 24.5 35.4 38.2
1024 35.8 45.7 47.9
8192 48.4 55.5 56.3

representations in our scheme is higher. But note that higher-dimensional repre-
sentations do not always lead to better results, as demonstrated in Section 4.3,
and that Graph L2 is always better than Graph L1 though they both involve
representations of the same dimension (4n). The results in Figure 4 can thus
verify the effectiveness of our scheme on different levels.

To investigate the performance of our scheme with the representations on
three levels all involved, we test our method on two datasets, i.e., 15 Scenes [3]
and PASCAL VOC 2007 [4]. On the 15 Scenes dataset, our result is 83.3%, as
listed in Table 1. The result in the original SPM paper [3] is 81.4%, and the one
in [12] is 81.6%. The classification results on VOC 2007 are given in Table 2.
The results of the original BoW model are also attached for reference. Table 2
demonstrates the great contribution of spatial modeling, since both SPM and
our scheme outperform BoW greatly. In addition, our scheme consistently out-
performs SPM with different code sizes on different datasets. Note that results
in Table 2 are all obtained with the same λn and λe. Therefore, it shows the
insensitivity of the two parameters. We can draw a conclusion that our scheme
cooperates fairly well with the representative of reconstruction-base schemes,
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Table 3. Classification results with SVC and different code sizes on VOC 2007.

Code size: n = 16 n = 64 n = 256

Category SPM Ours SPM Ours SPM Ours

aeroplane 63.9 64.5 70.5 70.9 73.2 73.2
bicycle 52.4 53.7 58.2 60.3 62.4 63.3
bird 38.6 39.1 39.9 42.1 50.4 50.6
boat 64.7 64.4 69.3 68.4 70.8 70.2
bottle 19.9 20.1 21.4 22.8 24.7 26.0
bus 54.1 56.6 61.8 61.9 65.6 65.0
car 70.6 72.4 74.7 75.4 77.0 77.9
cat 48.4 49.5 55.9 57.9 59.9 59.8
chair 47.9 48.3 50.0 50.5 54.6 54.2
cow 35.0 36.6 41.5 41.5 44.4 44.2
dinningtable 47.9 50.4 50.3 51.8 53.2 53.2
dog 37.1 36.3 36.6 37.0 44.1 45.6
horse 72.6 73.7 74.5 76.2 76.9 78.1
motorbike 57.8 58.5 62.8 64.3 66.8 67.2
person 77.0 77.7 80.3 80.8 83.0 83.7
pottedplant 20.6 22.2 24.6 25.4 28.1 28.6
sheep 40.0 39.8 44.6 47.0 47.1 48.1
sofa 47.6 48.1 52.1 52.9 55.1 56.2
train 68.1 70.1 74.3 74.8 77.4 77.6
tvmonitor 39.9 43.2 48.7 50.4 53.4 55.1

mean AP 50.2 51.2 54.6 55.6 58.4 58.9

i.e., LLC, considering the reported results in Table 2. Notably, Wang et al. [16]
reports higher results with LLC, i.e., 59.3%. However, this result is not repro-
ducible even with their own released source code, and our results are more com-
parable with those reported by Chatfield et al. in their extensive survey paper
on coding schemes [21]. To further investigate the performance of our scheme
when cooperating with the representative of probabilistic coding schemes, i.e.,
SVC, we list the category-wise classification results on VOC 2007 in Table 3.
The results again show that our scheme consistently performs better than SPM
with different codes sizes.

4.5 Efficiency analysis

The extra computational cost of our method is brought in by assigning features
to nodes and edges of the spatial graph. The overall computational complexity
for image representation is less than O(K ·M +Nall ·M), wherein Nall denotes
the total number of spatial regions. Usually, N ≪ K. For example, in one of our
experiments reported in Table 2, K = 8192, while Nall = 13. As a result, the
additional cost of our method is ignorable.
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4.6 Discussion

The original SPM scheme [3] grants different priority to different levels in order to
balance their weights in the image-level representation. Harada et al. [11] even
train the weights of different levels and blocks. Intuitively, such policy would
boost the performance. However, we find empirically that re-weighting between
levels gains limited improvements and brings in extra cost in practice. Using the
same priority is a commonly-adopted policy in the recent literature, e.g., [21], a
generally recognized survey on coding schemes.

Each node is a centroid of the local features extracted within a SPM block
from the training image set, and each edge corresponds to a pair of neighboring
blocks in SPM. The grid-like structure seems too rigid, and can be improved. We
can make the nodes movable, the edges removable and the graph code-specific.
Besides, supervised learning might generate discriminative spatial graphs and
further boosts the performance.

A histogram on node reflects the occurrence of features in a block, and a
histogram on edge reflects the occurrence of features which lie in one block and
tend to shift into another. However, the histogram on a node is linearly corre-
lated to those on its edges in our current implementation due to our assigning
strategy. There might be a better strategy which preserves richer information.
For example, the features definitely belonging to a block are assigned to the cor-
responding node, while the features tending to shift are assigned to histograms
on edges.

5 Conclusion and future work

Among different strategies for spatial modeling, spatial pooling has been the
most successful one. As a representative of spatial pooling schemes, SPM has
become one standard part of an integrated BoW model due to its great simplicity
and high performance. However, studies have shown that it is far from perfectly
simulating human’s behavior in perceiving spatial information. Two possible lim-
itations of SPM include ignoring the relation of blocks. In this paper, we have
proposed to capture the spatial information in images with a directed graph.
Our scheme, which considers the relationship between spatial blocks, has shown
its advantages in our experiments. In spite of the simplification in implementa-
tion, the proposed scheme has outperformed SPM with different kinds of coding
schemes on several popular datasets.

After a period of achieving accomplishments in the feature space in terms
of local feature detection, description and coding, it becomes more demanding
for us to put more efforts in the work about the image space, i.e, capturing
the spatial information contained in images. As one of the efforts towards this
aim, the follow-up work of this paper is in two aspects: The first is to build up
more flexible spatial graphs. The second is to find a better way to represent the
relation of blocks so as to generate richer representation.
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