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Abstract

In gait recognition field, template-based approaches
such as Gait Energy Image (GEI) and Chrono-Gait Im-
age (CGI) can achieve good recognition performance
with low computational cost. Meanwhile, CGI can pre-
serve temporal information better than GEI. However,
they pay less attention to the local shape features. To p-
reserve temporal information and generate more abun-
dant local shape features, we generate multiple HOG
templates by extracting Histogram of Oriented Gradi-
ents (HOG) of GEI and CGI templates. Experiments
show that compared with several published approach-
es, our proposed multiple HOG templates achieve bet-
ter performance for gait recognition.

1 Introduction

Human identification by gaits is a promising biomet-
ric authentication technique as it is non-invasive and can
be recognized at a distance. However, its performance
suffers from many exterior factors such as footwear, ter-
rain and fatigue [7].

To address these issues, model-based approaches
aim to recover the underlying behavior of gait with a
structure/motion model [14] [4]. However, it is not
easy to quantify models for discrimination. Model-
free approaches recognize human based on either gait
sequences or gait templates. For example, Hidden
Markov Models [8] and Dynamic Time Warping [9]
use gait sequence for gait recognition directly without
breaking the internal temporal relationship between gait
frames. However, they are computational-costly. By
averaging a gait sequence into a template, Gait Ener-
gy Image (GEI) [3] achieves real-time recognition with
relatively low accuracy. The recently proposed Chrono-
Gait Image (CGI) [11] figured out a new template by
mapping temporal information into color space of a s-

ingle gait sequence, achieving higher accuracy with the
same computational cost as GEI. However, both GEI
and CGI pay less attention to extract the dense and lo-
cal shape features from the templates, which may be
crucial to gait-based identification.

In this paper, we propose to utilize Histogram of Ori-
ented Gradient proposed by [6] to obtain these shape
features from both GEI and CGI templates. Then we
project these features into the low-dimensional sub-
spaces by using Principal Component Analysis and Lin-
ear Discriminant Analysis (PCA+LDA). Finally, we
classify each probe gait data according to nearest neigh-
bor rules.

With this way, we can better preserve temporal infor-
mation and extract more abundant features than other
template-based methods. Experiments in a benchmark
gait database show that our proposed multiple HOG
templates attain better performance compared with oth-
er published algorithms.

2 Multiple HOG Templates

In this section, we will present the proposed Multi-
ple HOG templates. For better understanding, we show
its flow chart in Fig. 1. And the following introduction
are in line with the flow chart. From the figure we can
see that to obtain a template, it is necessary to subtract
background from input video followed by detecting gait
period of each sequences. Since the two steps have been
well-studied in literature and less related to our refine-
ments, we will omit their introductions and assume that
the input gait videos have been well processed in this
paper.

Currently, there are two typical approaches to con-
struct a gait template from a period of gait sequences:
GEI and CGI. Given a binary gait silhouette image Bt

at the t-th frame of a sequence, the gray-level GEI is
G(x, y) = 1

N

∑N
t=1 Bt(x, y). Here N is the number

of frames in a complete cycle of a silhouette sequence,
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Figure 1. The Flow Charts of the Combined HOG features for Gait Recognition

and x, y are the coordinate values of the frame. Differ-
ent from GEI, CGI encodes temporal information into
a template via three-channel color mapping [12]. Fur-
thermore, it extracts the outer contour of each silhouette
image rather than the silhouette itself to overcome the
overlapping issue of gait silhouettes that will degener-
ate the performance of color encoding. The differences
between GEI and CGI are illustrated in Fig. 2.

Figure 2. The left two images are key sil-
houettes in one walking circle. The third
is GEI and the fourth is CGI.

Note that both GEI and CGI pay less attention to lo-
cal shape features. Therefore, we utilize HOG opera-
tor to better characterize the local object appearances
and shapes based on the distribution of local intensi-
ty gradients with oriented directions [6]. Specifical-
ly, we extract the gradient of each pixel (x, y) with
g(x, y) =

√
gx(x, y)2 + gy(x, y)2 according to 1-

order gradient operator [−1, 0, 1] and its transpose, and
compute the corresponding direction with O(x, y) =
gx(x, y)/gy(x, y). After dividing the orientation into
9 bins, we generate a set of 3-D histogram features
by using weighted vote based on the relationship of
the orientation and two spatial directions of each pixel
and its neighboring pixels. More details can be found
in [6]. Note that for grayscale GEI the computation
of HOG is very convenient while for CGI we get its
HOG features by averaging three components in RG-
B space. The reason for the latter one is because we
observe that averaging can be helpful to reduce the sen-
sitivity of HOG to noise and thus improve the corre-
sponding performance. It can be seen from Fig. 3 that
although the sketch maps of HOG on GEI and CGI are
very similar in their envelops, the shapes are differen-
t. A reason is that CGI preserves more temporal infor-
mation than GEI. Since GEI and CGI pay attention to
the gait silhouette and temporal-preserved contour, re-
spectively, they are complimentary to some extent. To

Figure 3. The Histograms of Orientation
Gradients for GEI (Top) and CGI (Bottom)
in the same gait sequence. Only 40 fea-
tures are selected from 30,000 features for
better visualization.

include the spatial information and temporal informa-
tion, we thus extract HOG features from GEI and CGI
templates. After that, we perform Principal Component
Analysis followed by Linear Discriminant Analysis (P-
CA+LDA) to obtain a discriminant subspace for effec-
tiveness and efficiency. Given a set of gallery set G,
we classify the probe set P based on nearest neighbor
rule, i.e., C(i) = argminj ‖(PHC(i) − GHC(j)) +
(PHG(i) − GHG(j))‖2 where GHC(j) and GHG(j)
denote the low-dimensional HOG+CGI/HOG+GEI fea-
tures of the j-th gallery sample. PHC(i) and PHG(i)
are defined similarly for the i-th probe sample.

Consequently, we can characterize the local object
and shape appearances without losing temporal infor-
mation. Note that although the extraction of HOG is
time-consuming, it has less influence to the recognition
procedure after the dimension is reduced.
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3 Experiments

We evaluate our algorithm on the USF HumanID
Gait Database (silhouette version 2.1). The database
consists of 122 individuals’ walking data in elliptical
paths on concrete and grass surface, with/without a
briefcase, wearing different shoes, and sampling in e-
lapsed time. Sarkar et al. [7] selected 122 individuals’
sequences with “Grass, Shoe Type A, Right Camera,
No briefcase, and Time t1” for the gallery set, and de-
veloped 12 probe sets (A to K as in Tab. 1), each of
them reflects specific conditions. We report Rank1 and
Rank5 recognition performances in this paper. To avoid
the influence from tuning the parameters in PCA and
LDA, we empirically choose the same contribution ra-
tio 0.995 for PCA and factor 1e8 for LDA for all the
experiments.

We evaluate the “Rank1” and “Rank5” performances
of several recent approaches including baseline algo-
rithm (based on silhouette shape matching) [7], HM-
M [4], IMED+LDA [10], 2DLDA [10], MTP [1] and
Tensor Locality Preserving Projections (TLPP) [2]. The
Rank1 performance denotes the percentage of the cor-
rect subjects ranked first while the Rank5 performance
denotes the percentage of the correct subjects appeared
in any of the first five places in the rank list. We also
report the average performance by computing the ratio
of correctly recognized subjects to the total number of
subjects [12].

From the Tab. 2 we can see that the proposed Mul-
tiple HOG templates obtain the best performance in av-
eraging performance. A possible reason is that CGI and
GEI play complement roles and HOG further improves
the accuracy by extracting their local shape features.

We also investigate the influence of real, synthetic
and fusion templates, which are used to enhance the
robustness of gait recognition in different environmen-
t [7]. From Tab. 3 it can be seen that Multiple HOG
templates achieve further improvements. It means that
the proposed new templates are more robust in different
environments.

It is worth mentioning that the proposed multiple
HOG templates has outstanding performance under pa-
rameter “V” - View (0o,90o etc.) and perform not so
impressive in probe set D, E, F sharing a common en-
vironmental parameter “S”- Surface. It indicates that
our method can deal with different views well and has
slightly shortage to deal with surface environment.

4 Conclusion

In this paper, we propose multiple HOG features
based on CGI and GEI templates to characterize the lo-

cal shape and temporal information of gait sequence.
Experiments on a benchmark database show that the
proposed templates can attain better performance than
other published algorithms. In the future, we will study
how to better weight the combination of HOGCGI and
HOGGEI for further improvement. Furthermore, how
to better preserve the temporal information of CGI in
our templates and evaluate it in other dataset such as
Osaka data [5] deserves studying.
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Table 1. Twelve experiments designed for individual recognition in USF HumanID Database.
Experiment Label A B C D E F G H I J K L

Size of the Probe Set 122 54 54 121 60 121 60 120 60 120 33 33
Gallery/Probe Difference V H VH S SH SV SHV B BS BV THC TS

V-View, H-Shoe, S-Surface, B-Briefcase, T-Time, and C-Clothing

Table 2. The Rank1 and Rank5 performances of different features on the USF Gait Dataset
RANK1 A B C D E F G H I J K L Avg
Baseline [3] 73 78 48 32 22 17 17 61 57 36 3 3 40.96
HMM [7] 89 88 68 35 28 15 21 85 80 58 17 15 53.54
IMED+LDA [13] 88 86 72 29 33 23 32 54 62 52 8 13 48.63
2DLDA [10] 89 93 80 28 33 17 19 74 71 49 16 16 50.98
TLPP [4] 87 93 72 25 35 17 18 62 62 43 12 15 46.95
MTP [2] 90 91 83 37 43 23 25 56 59 59 9 6 51.57
GEI 84 87 69 19 18 10 13 54 55 40 9 3 39.01
HOG GEI 92 89 82 31 32 23 23 92 82 68 12 6 52.63
CGI 85 87 78 38 35 23 18 93 80 60 9 9 51.27
HOG CGI 92 89 83 34 38 22 25 88 82 69 3 3 57.31
Multi-HOG Templates 96 91 83 33 33 18 25 91 82 82 9 6 59.39
RANK5 A B C D E F G H I J K L Avg
Baseline [3] 88 93 78 66 55 42 38 85 78 62 12 5 64.54
HMM [7] - - - - - - - - - - - - -
IMED+LDA [13] 95 95 90 52 63 42 38 85 78 62 21 19 68.60
2DLDA [10] 97 93 93 57 59 39 47 91 94 75 37 34 70.95
TLPP [4] 94 94 87 52 55 35 42 85 78 68 24 33 65.18
MTP [2] 94 93 91 64 68 51 52 88 83 82 18 15 71.38
GEI 92 94 93 45 53 29 37 77 77 69 15 15 58.00
HOG GEI 98 94 91 60 48 43 45 96 93 87 24 24 67.11
CGI 94 94 87 64 52 41 45 96 92 87 18 18 65.66
HOG CGI 98 94 91 65 55 42 47 97 93 93 30 18 74.11
Multi-HOG Templates 98 94 93 66 52 44 47 96 93 93 30 21 74.32

Table 3. The Rank 1 and Rank5 performances of Gait Recognition on USF templates
Rank1 A B C D E F G H I J k L Avg
GEIreal 88 87 76 28 27 17 15 58 57 44 9 6 45.51
GEIsyn 83 91 70 19 20 10 15 49 45 31 9 6 38.83
GEIfusion 89 94 76 41 42 23 23 60 63 60 9 6 48.90
HOGGEIreal 94 93 83 33 30 16 16 85 80 68 15 3 55.74
HogGEIsyn 81 91 61 40 33 27 20 92 83 58 15 6 55.32
HogGEIfusion 93 93 87 36 33 20 25 88 80 68 12 6 57.83
CGIreal 90 89 82 28 30 15 13 83 75 60 3 3 51.98
CGIsyn 84 87 67 27 28 18 15 63 55 41 12 6 44.89
CGIfusion 84 87 80 41 38 29 35 78 67 57 6 12 55.11
HogCGIreal 93 94 87 28 35 11 17 87 82 74 12 9 56.26
HogCGIsyn 85 87 70 40 42 22 25 84 83 63 3 6 55.64
HogCGIfusion 92 94 83 33 33 17 18 88 87 64 12 6 56.47
Multi-HOG Templates real 94 93 85 35 40 18 27 86 73 68 9 6 57.31
Multi-HOG Templates syn 82 91 63 37 38 25 25 85 78 53 3 9 53.44
Multi-HOG Templates fusion 90 94 76 37 40 28 32 87 77 70 9 6 58.77
Rank5 A B C D E F G H I J k L Avg
GEIreal 94 94 89 57 58 36 42 83 82 73 12 12 65.64
GEIsyn 93 94 89 40 40 30 33 69 70 63 24 21 58.04
GEIfusion 96 94 96 69 68 53 53 84 80 78 21 30 68.72
HOGGEI 98 94 93 57 57 43 47 96 95 88 30 21 72.96
HogGEIsyn 92 93 87 66 60 49 48 96 93 82 27 27 73.07
HogGEIfusion 99 94 94 63 55 44 45 96 95 88 27 27 73.80
CGIreal 96 94 93 64 62 46 50 94 93 85 27 33 73.90
CGIsyn 89 89 82 53 52 37 48 80 87 72 30 30 65.41
CGIfusion 90 93 91 65 63 48 52 89 90 82 27 27 72.13
HogCGIreal 99 96 96 61 60 44 43 96 97 88 27 24 74.11
HogCGIsyn 90 91 85 61 57 48 52 93 88 80 24 24 70.88
HogCGIfusion 99 96 96 58 57 37 45 96 95 86 27 15 72.03
Multi-HOG Templates real 98 96 96 65 58 48 43 92 93 89 30 24 74.32
Multi-HOG Templates syn 94 94 83 65 55 46 52 93 90 80 18 30 71.71
Multi-HOG Templates fusion 98 96 94 66 55 51 48 93 92 87 27 21 74.53
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