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Abstract—Gait Energy Image (GEI) is an efficient template for human identification by gait. However, such a template loses temporal

information in a gait sequence, which is critical to the performance of gait recognition. To address this issue, we develop a novel

temporal template, named Chrono-Gait Image (CGI), in this paper. The proposed CGI template first extracts the contour in each gait

frame, followed by encoding each of the gait contour images in the same gait sequence with a multichannel mapping function and

compositing them to a single CGI. To make the templates robust to a complex surrounding environment, we also propose CGI-based

real and synthetic temporal information preserving templates by using different gait periods and contour distortion techniques.

Extensive experiments on three benchmark gait databases indicate that, compared with the recently published gait recognition

approaches, our CGI-based temporal information preserving approach achieves competitive performance in gait recognition with

robustness and efficiency.

Index Terms—Computer vision, gait recognition, biometric authentication, pattern recognition

Ç

1 INTRODUCTION

BIOMETRIC authentication has broad applications in social
security, individual identification in law enforcement,

and access control in surveillance. Unlike other biometric
features such as iris, faces, palm, and fingerprint, the
advantages of gait include: 1) Gait can be collected in a
noncontactable, noninvasive, and hidden manner; 2) gait is
the only perceptible biometric at a distance. However, the
performance of gait recognition suffers from some exterior
factors such as clothing, shoes, briefcases, and environmental
context. Furthermore, whether or not the spatiotemporal
relationship between gait frames in a gait sequence is
effectively represented also influences the performance of
gait recognition systems. Although it is a challenging task, the
nature of gait indicates that it is an irreplaceable biometric [1]
and can benefit the remote biometric authentication [2].

To build a successful gait recognition system, feature
extraction plays a crucial role. Currently, gait feature
extraction methods can be roughly divided into two major
categories: model-based and model-free approaches. Model-
based approaches assume that the gait can be modeled with a
structure/motion model [3]. However, it is not easy to extract

the underlying model from gait sequences [3], [4]. Model-
free approaches either keep temporal information in the
recognition (and training) stage [5], [6], [7], [8], or convert a
sequence of images into a single template [1], [9], [10], [11],
[12]. Although some model-free approaches such as Gait
Energy Image (GEI) [1] have attractively low computational
cost, such a conversion may lose the temporal information of
gait sequences.

To preserve temporal information and display time-
varying sequence in a single colored image, the visualiza-
tion community has proposed some interesting strategies.
For example, Woodring and Shen [13] displayed time-
varying data by encoding the time varying information of
the data into color spectrum. Jänicke et al. [14] proposed
measuring local statistical complexity for multifield visua-
lization. More recently, Wang et al. [15] claimed that
critically important areas are the most essential aspect of
time-varying data to be detected and highlighted. However,
it is difficult and ineffective to directly employ such
methods to generate a good temporal template for gait
recognition since, unlike visualization data, gaits always
have larger overlapped regions between frames [16].

Considering the pros and cons of gait recognition
methods mentioned above, we pay more attention to the
refinement of the single template method in this paper
because of its simplicity and low computational complex-
ity. We propose a multichannel temporal encoding
technique, named Chrono-Gait Image (CGI), to encode a
gait sequence to a multichannel image in order to
preserve the temporal information of gait patterns well.
When the number of multichannel is equal to 3, it can be
regraded as a pseudocolor image. As an illustrative
example, we show an example of a gait sequence, GEI
and CGI, in Fig. 1. To enhance the discriminant ability of
CGIs in complex environment, we also introduce several
strategies to generate real and synthetic CGI templates. In
comparison with the state-of-the-art methods, our major
contributions are:
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1. Simple and easy to implement, CGI effectively
preserves the temporal information in a gait se-
quence with a single template image.

2. Unlike intensity, multichannel technique, which has
higher variance than grayscale, can enlarge the
distance between gait sequences from different
subjects and thus benefit gait recognition.

3. CGI is robust to different gait period detection
methods which are usually a basis of constructing
gait templates.

4. Our proposed method shows better robustness
to surrounding environment according to our
experiments.

5. Compared with most recently published gait recog-
nition approaches, the training phase and recogni-
tion phase of CGI are quite efficient to make it
competitive in some real-time scenarios.

6. To the best of our knowledge, multichannel encoding
gait images as a temporal information preserving
template for gait recognition has not yet been
exploited in the biometric authentication community.

Experiments indicate that compared with several re-
cently published approaches, the CGI temporal template
attains competitive performance on three benchmark
databases. It is worth noting that this paper is an extended
version of our previous conference paper [16]. The main
differences are that:

1. We generalize the previous pseudocolor gait tem-
plate to a more general multichannel one. In this
way, we can better understand the underlying
mechanism that the proposed CGI has a good
performance in gait recognition.

2. We improve the calculation of the average width of
the leg region in the procedure of period detection
and multichannel mapping to make it more reason-
able, leading to better performance.

3. The whole technical details, including preproces-
sing, contour extraction, period detection, multi-
channel encoding, and representation construction
for classification, are further clarified so that the
work can be easily reproduced.

4. We evaluate the performance of our proposed CGI

temporal information preserving template in three
benchmark databases (i.e., USF, CASIA, and Soton)
rather than the previous one (i.e., USF).

5. Furthermore, we conduct comprehensive experi-
ments to study the influence of different parameters
and variants in our algorithms to the performance of

gait recognition, which also makes the properties of
our proposed approaches clear.

6. We also discuss the limitation of our algorithms and
some potential ways to avoid the issue.

The remainder of the paper is organized as follows: We
give a brief survey on gait recognition in Section 2, and detail
the proposed CGI temporal information preserving template
in Section 3. We introduce the generation of real and synthetic
CGI templates and the corresponding human recognition
procedure in Section 4. Experiments are performed and
analyzed in Section 5. We conclude the paper in Section 6.

2 RELATED WORK

Gait features are very important in improving the perfor-
mance of gait recognition. Generally speaking, there are two
different gait feature extraction methods.

Model-based approaches are devoted to recovering the
underlying mathematical construction of gait with a
structure or motion model [3]. Wang et al. adopted
procrustes analysis to capture the mean shapes of the gait
silhouettes [17]. However, it is time consuming and
vulnerable to noise. Veres et al. [18] and Guo and Nixon
[19] employed the analysis of variance and mutual
information, respectively, to discuss the effectiveness of
features for gait recognition. Bouchrika and Nixon pro-
posed a motion-based model by using the elliptic Fourier
descriptors to extract crucial features from human joints [4].
Wang et al. [20] employed a condensation framework in
which the structural-based and motion-based models are
combined to refine the feature extraction. Chai et al. [21]
divided the human body into three parts; then the variances
of these parts are combined as the crucial gait features.
Although the structure-based models can, to some degree,
deal with occlusion and self-occlusion as well as rotation,
the performance of the approaches suffers from the
localization of the torso and it is not easy to extract the
underlying model from gait sequences [3], [4]. Furthermore,
it is necessary to understand the constraints of gait such as
the dependency of neighboring joints and the limitation of
motion to develop an effective motion-based model [3].

The model-free approaches can be divided into two
major categories based on the manners of preserving
temporal information. The first strategy keeps temporal
information in the recognition (and training) stage [5], [6],
[7], [8]. Sundaresan et al. utilized a hidden Markov models
(HMMs) based framework to preserve such information [6].
By regarding gait data as a collection of cumulated frames,
Kobayashi and Otsu [7] extracted the divergence between
different gait states using the “Cubic Higher-order Local
Auto-Correlation” (CHLAC) technique. Sarkar et al. [8]
utilized the correlation of sequence pairs to preserve the
spatiotemporal relationship between the galley and probe
sequences. Wang et al. [5] applied principal component
analysis (PCA) to extract statistical spatiotemporal features
of gait frames. Liu and Sarkar [22] employed population
HMM to model human walking and generated the
dynamics-normalized stance-frames to recognize indivi-
duals. However, large-scale training samples are generally
needed for probabilistic temporal modeling methods (such
as HMMs) to obtain a good performance. A disadvantage
for the direct sequence matching methods is the high
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Fig. 1. From left to right: A gait sequence, gait energy image, and
chrono-gait image.



computational complexity of sequence matching during
recognition and the high storage requirement.

The second strategy converts a sequence of images into a
single template [1], [9], [10], [11], [12]. Liu and Sarkar [9]
proposed representing the human gait by averaging all the
silhouettes. Motivated by their work, Han and Bhanu [1]
proposed the concept of GEI, and constructed the real and
synthetic gait templates to improve the accuracy of gait
recognition. With a series of grayscale averaged gait images,
Xu et al. employed discriminant analysis with tensor
representation (DATER) for individual recognition [10].
Chen et al. proposed multilinear tensor-based nonpara-
metric dimension reduction (MTP) [12] for gait recognition,
and Zhang et al. generalized the MTP into low-resolution
gait recognition [2]. Recently, Guo and Nixon proposed to
utilize mutual information to select a subset of gait features
to improve the performance of gait recognition [19].
However, the above template-based methods more or less
lose the temporal information of gait sequences. For
example, averaging template methods throw out all the
temporal order information of the gait sequence. Moreover,
the time and space computational complexities of those
tensor-based approaches are too high to be employed in real
applications [10], [11].

3 CHRONO-GAIT IMAGES

Generally speaking, regular human walking always has a
fixed cycle with a particular frequency because of the basic
structure of human body. As a result, such walking is
generally used in most of the current approaches of human
identification by gait. However, some methods may neglect
the influence of gait cycle information, e.g., GEI. Mean-
while, other methods require high computational cost to
preserve such information. To address the issue, we
propose to encode time-varying gait cycle information into
a single chrono-gait image by using the multichannel
technique. We also make several fundamental assumptions
in this paper: 1) Most normal people have a similar gait
gesture such as the stride length. 2) Each person has his/her
unique gait behavior, such as the shape of the torso, the
moving range of limbs, and so on. 3) Each channel of the
multichannel method can be regarded as a function of time.

In the following sections, we will introduce some
preprocessing techniques used for gait recognition. We also
present a novel period detection method that extracts the
gait period more accurately. Then, we detail the multi-
channel algorithm of generating the temporal information
preserving gait template.

3.1 Preprocessing and Period Detection

To achieve a gait recognition system, some preprocesses,
including background subtraction and foreground align-
ment, are required. Here, we assume that such preprocesses
have been done to the original gait sequence. Concretely, we
perform our gait recognition algorithm on the silhouette
images. The silhouette images are generally obtained by
using some well-known algorithms to subtract background
and align foreground objects, e.g., the baseline algorithm
proposed by Sarkar et al. [8]. Then, we employ different
channels to encode spatial-temporal information in different

phases of the gait period to generate the chrono-gait image.
The goal of CGIs is to compress the silhouette images into a
single multichannel image and preserve as much temporal
relationship between continuous frames as possible.

Considering that regular human walking is a periodical
motion, it is necessary to detect the period in the gait
sequence for preserving the temporal information in the CGI
template. We propose using the degree of the individual’s
two legs apart from each other to represent regular human
walking, to detect the gait period in order to find some key
frames, and to measure each gait frame’s relative position in
a single period. Since some exterior factors such as bag,
briefcase, shadow, and surface that might be misclassified
into the foreground can influence the performance of period
detection, we calculate the average widthW of the leg region
in a gait silhouette image I as follows:

W ¼ 1

�h� �hþ 1

X�h
i¼�h
ðRi � LiÞ; 0 � � � � � 1; ð1Þ

where h is the height of an individual (the foreground) in
the image, Li and Ri are the positions of the leftmost and
rightmost foreground pixels in the ith line of the individual,
respectively. Compared with our previous work [16], we
use the height of the individual instead of the height of the
whole image to calculate the average width of leg region.
The reason is that some anatomical studies [23] show that
the relative vertical positions (normalized by height) of
some anatomical landmarks of an individual are similar to
most people, e.g., the vertical positions of hip, knee, and
ankle are 0.470, 0.715, 0.961 h, respectively. In the previous
work, we assumed that the leg regions were located in a
similar vertical position of the gait image. However, in
some gait databases, the silhouette images are not normal-
ized to make all the individuals the same height. Further-
more, some alignment technologies (e.g., alignment based
on the centroid of the silhouette) may lead to the leg region
of different individuals being located in different positions
on the Y -axis of the image. Therefore, finding the leg region
by the relative vertical position of the individual is more
reasonable than by the relative position of the whole image.
Here, the two parameters � and � are used to constrain the
computation of the gait period to the leg region, and
meanwhile decrease the influence of those external factors.

It is worth noting that Sarkar et al. [8] proposed detecting
such key frames by counting the number of foreground
pixels in the lower half of the silhouettes in their baseline
algorithm. We show the difference between these two
detection methods in Fig. 2, from which we can see that two
detection methods pay attention to different parts of gait
sequence. In the proposed period detection method, the
average width W will have a local maximum when the two
legs are farthest apart from each other and reach a local
minimum when the two legs wholly overlap. Fig. 2 also
indicates that our method produces sharper peaks and
valleys, and thus preserves the correct temporal order well
compared with the baseline algorithm [8].

3.2 Multichannel Mapping

To visualize time-varying information, several possible
strategies can be considered in the visualization community.
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A representative way is to employ pseudocolor to visualize
such information for volume rendering [13]. In this method,
Woodring and Shen proposed four integration functions:
alpha compositing, first temporal hit, additive colors, and
minimum/maximum intensity. Note that they assume that
there is little overlapped foreground region between
continuous frames, whereas in our case the overlap of
foreground silhouettes is serious between gait frames.
Consequently, we cannot directly use their methods to
generate a good temporal information preserving template
for gait recognition [16].

Since the outer contour of the silhouette images is an
important feature [5], [17] and also preserves the spatial
information with small degree of overlap, we attempt to
extract the contours instead of silhouettes. To extract the
contours of the silhouette images, there are various edge
detection techniques such as gradient operator, LoG
operator, and local information entropy [24]. We adopt
local information entropy to obtain the gait contour from
the silhouette image since it provides more abundant
features than gradient and LoG operators. The local
information entropy is defined as

htðx; yÞ ¼ �
n0

j!dðx; yÞj
ln

n0

j!dðx; yÞj
þ n1

j!dðx; yÞj
ln

n1

j!dðx; yÞj

� �
;

ð2Þ

where the d-neighborhood of point ðx; yÞ based on
D8 distance (chessboard distance) is

!dðx; yÞ ¼ fðu; vÞjmaxfju� xj; jv� yjg � dg;

and n0 and n1 are the numbers of foreground pixels and
background pixels in !dðx; yÞ, respectively. Term t repre-
sents the frame label, and x and y denote the horizontal and
vertical values in the two-dimensional image coordinate,
respectively. The neighborhood parameter d is set to 1 to
emphasize the locality in our experiment. Then, we
normalize the entropy by the following formula:

h0tðx; yÞ ¼
htðx; yÞ �minx;yhtðx; yÞ

maxx;yhtðx; yÞ �minx;yhtðx; yÞ
: ð3Þ

Once the contours are extracted, we propose a liner
interpolation function to encode the spatial-temporal in-
formation to k channels. First, we use a function to map each
frame in a single 1=4 gait period (change from the individual

standing with two legs overlapping to taking a step with two

legs apart from each other extremely or just the reverse

process) into ½0; 1� by computing the degree of two legs apart

from each other, which is explained in (1), to represent each

frame’s position in the time domain of each period:

rt ¼ ðWt �WminÞ=ðWmax �WminÞ; ð4Þ

where Wt is the average width of the leg region of the

tth frame. Wmax and Wmin are the extreme widths of the

1=4 period which the tth frame belongs to.
Then, we give the tth frame different weights CiðrtÞ in

different channels according to their position in the time
domain defined above. When the number of channels k ¼ 1,
the strategy is similar to GEI; each frame will have the same
weight in the only one channel without considering their
position in the time domain, i.e., C1ðrtÞ ¼ 1, and the
temporal information will not be preserved here.

When k > 1, we can separate the whole 1=4 period into

k� 1 equal parts by k separating points pi ¼ i=ðk� 1Þ,
i ¼ 0; 1; . . . ; k� 1, and employ the ith channel to describe

the temporal information in the (i� 1Þth and ith parts; the

weight CiðrkÞ can be defined as

CiðrtÞ ¼

rt � pi�2

pi�1 � pi�2

� �
I pi�2 < rt � pi�1;

1� rt � pi�1

pi � pi�1

� �
I pi�1 < rt � pi;

0 others;

8>>>><
>>>>:

ð5Þ

where I is the maximum of intensity value, e.g., 255. Note

that we need to introduce the 0th and the kth parts and two

virtual separating points p�1 and pk to make the definition of

C1 and Ck uniform. However, they are not needed in the real

calculation. For visualization, we take k ¼ 3 and give

different weights to each frame in the Red, Green, and Blue

channels. That means we map the human’s motion into

the continuous variation in the RGB space:

BðrtÞ ¼ C1ðrtÞ ¼
ð1� 2rtÞI 0 � rt � 1=2;
0 1=2 < rt � 1;

�
ð6Þ

GðrtÞ ¼ C2ðrtÞ ¼
2rtI 0 � rt � 1=2;
ð2� 2rtÞI 1=2 < rt � 1;

�
ð7Þ

RðrtÞ ¼ C3ðrtÞ ¼
0 0 � rt � 1=2;
ð2rt � 1ÞI 1=2 < rt � 1:

�
ð8Þ

3.3 Representation Construction

We calculate the multichannel gait contour image Ct of the

tth frame in the gait sequence as

Ctðx; yÞ ¼

h0tðx; yÞ � C1ðrtÞ
h0tðx; yÞ � C2ðrtÞ

..

.

h0tðx; yÞ � CkðrtÞ

0
BBB@

1
CCCA: ð9Þ

The equation indicates that unlike the usual binary boundary

image, we needn’t select some values in h0ðx; yÞ as the signal

of a boundary. Given the gait contour images Ct, a CGI

temporal template CGIðx; yÞ is defined as follows:
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Fig. 2. Comparison between our method and the baseline algorithm on
gait period detection. The X-axis denotes the order of gait frames. The
Y -axis represents the average width of each frame for our method,
and the number of foreground pixels in the lower half of the silhouette
for baseline method. Both of them are normalized to ½0; 1�. Here, the
values of � and � are 23/32 and 29/32, respectively.



CGIðx; yÞ ¼ 1

p

Xp
i¼1

PGIiðx; yÞ; ð10Þ

where p is the number of 1=4 gait periods, and PGIiðx; yÞ ¼Pni
t¼1 Ctðx; yÞ is the sum of the total ni multichannel contour

images in the ith 1=4 gait period. Note that we use the

normal addition when we calculate the CGIðx; yÞ, while we

use the saturated addition (which mean the result will be I

when the sum exceeds I) when we calculate the PGIðx; yÞ.
The whole process to generate CGI is shown in Fig. 3.

Here, we choose k ¼ 3 because this setting maps the gait

sequence into a RGB image which can be visualized well and

thus help to illustrate the whole generating process better.

The first row shows nine silhouettes in the first 1=4 gait

period. And the second row shows the corresponding

colored gait contour images after edge detection and color

mapping. Note that we have more than two values in each

contour image. Then, we sum all nine of these images to

obtain the first one PGI1 in the third row, representing this

1=4 period. The second to the eighth images on the third row

represent PGIs corresponding to other different 1=4 periods

in the same gait sequence. At last, we average all these

frames to get the final CGI shown as the last one in the third

row. It is not difficult to see that we obtain a better

visualization result and a more informative gait template,

which will be demonstrated in gait recognition experiments.

4 HUMAN RECOGNITION USING CGI

Now we can employ the proposed CGI temporal template

for individual recognition by measuring the similarity

between the gallery and probe templates. However, there

are probably several disadvantages of doing so: 1) Since

the gait sequences are sampled from similar physical

conditions, the templates attained from such sequences

may result in overfitting. 2) Due to the fact that the number

of CGIs is small, it is a typical small sample size problem

and thus cannot characterize the topology of essential gait

space. 3) If we regard one pixel as one dimension, the

dimensions of the original gait space are very high and

the performance of gait recognition systems suffers from

the problem of the curse of dimensionality. To solve these

issues, we propose to generate CGI-based real templates

and synthetic templates, projecting the templates into

certain low-dimensional discrimination subspace with the
dimension reduction method.

Specifically, we generate the real templates by referring
to the multichannel image of each period as a temporal
information preserving template. In other words, we
average continuous four PGIs in one period. One advantage
is that such a template keeps the similar gait temporal
information as the CGI of the whole sequence owns.
Furthermore, we generate synthetic templates to enhance
the robustness to the exterior factors such as shadows.
Similarly to Han and Bhanu [1], we cut the bottom 2� i
rows from the CGI and resize to the original size using the
nearest neighbor interpolation. If parameter i varies from 0
to K � 1, then a total of K synthetic templates will be
generated from each CGI template. Some examples of real
and synthetic templates are shown in Fig. 4. For visualiza-
tion, we also set k ¼ 3 in these figures.

To address the curse of dimensionality issue without
losing the computational efficiency, we employ Principal
Component Analysis and Linear Discriminant Analysis
(PCA+LDA) [25] to project the real and synthetic templates
in the gallery set into a low-dimensional subspace. With the
projection matrix calculated by PCA+LDA, the real/
synthetic templates in the probe set will be projected into
a low-dimensional subspace. Let R̂p and Ŝp be the real and
synthetic templates of the individual in probe sets, respec-
tively, and let Ri and Si be the real and synthetic templates
of the ith individual in the gallery sets, respectively. In the
subspace, the real/synthetic templates are recognized
according to the minimal euclidean distances (dðR̂p;RjÞ or
dðŜp;SjÞ) between the probe real/synthetic feature vectors
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Fig. 3. An example of generating a CGI temporal template.

Fig. 4. Examples of real templates (top) and synthetic templates
(bottom) for a gait sequence.



to the class center of the gallery real/synthetic feature
vectors. To further improve the performance, we propose to
fuse the results of these two types of templates using the
following equation:

dðR̂p; Ŝp;Ri;SiÞ ¼
dðR̂p;RiÞ

minjdðR̂p;RjÞ
þ dðŜp;SiÞ

minjdðŜp;SjÞ
;

i; j ¼ 1; . . . ; C;

ð11Þ

where C is the number of classes, i.e., the number of subjects
here. We assign the probe template to the kth class if

k ¼ arg min
i

dðR̂p; Ŝp;Ri;SiÞ; i ¼ 1; . . . ; C: ð12Þ

More details about real and synthetic templates can be
referred in Han and Bhanu’s work [1].

5 EVALUATION EXPERIMENTS

In this section, we will introduce our experiment setting,
evaluate the performance of our CGI template by compar-
ing with other state-of-the-art algorithms, study its robust-
ness under different parameters and strategies, and discuss
its pros and cons.

5.1 Experiment Settings

We evaluate the CGI algorithm on three benchmark
databases, including the USF HumanID Gait Database
(silhouette version 2.1) [8], CASIA Gait Database (Data set
B) [26], and Soton Large Gait Database [27]. Some examples
from these databases are illustrated in Fig. 5.

In the USF HumanID Gait Database (version 2.1), the gait
sequences are sampled from 122 individuals walking in
elliptical paths on concrete and grass surfaces, with/without
a briefcase, wearing different shoes, and with different elapse
time. By choosing the sequences with “Grass, Shoe Type A,
Right Camera, No Briefcase, and Time t1” for the gallery set,
Sarkar et al. [8] developed 12 experiments, each of which is
under a specific condition (Table 1). They also provide a
manual silhouette version [28] in which some parts of body
for each frame are labeled manually on a subset of the
whole database.

The CASIA Gait Database (Data set B) consists of 124
individuals. For each individual, six gait sequences were
captured under normal conditions, two sequences were
captured when the people walking with a bag, and the other
two sequences were captured when the people wearing a
coat (named NM-01 to NM-06, BG-01, BG-02, CL-01, CL-02,
respectively). Each gait sequence has 11 different view
directions, from 0 to 180 degrees with 18 degrees between
each two nearest view directions. Yu et al.’s work [26] give

more details about this database. In our experiment, we only
use the data captured from 90 degrees.

The Soton Large Gait Database consists of 115 individuals
performing a normal walk. Each gait sequence was captured
from the oblique view. This database includes gait sequences
walking both from left to right and from right to left. For
simplification, we flip some of them horizontally to make all
the data have the same walking direction. More details about
this database can be found in Shutler et al.’s work [27].

All three of these databases provide the silhouette
benchmark images after background subtraction. Only the
silhouette images of the USF HumanID Gait Database have
been aligned already. Furthermore, we align these silhou-
ettes by aligning their horizontal centroid and cut the
silhouette images of CASIA Database and Soton Database
into 160� 100 and 140� 91, respectively. All of our
experiments are based on these aligned silhouette images.

In most of our experiments, we evaluate the performance
of our algorithms based on the USF HumanID Gait
Database. The reasons are that 1) this database is collected
from an outdoor environment and thus is more challenging
with respect to the number of subjects and the number of
affecting factors, 2) it provides a preliminary experimental
setting for gallery and probe sets, and most of the existing
algorithms have used it for algorithm evaluation and
comparison, and 3) the silhouette qualities in USF are of
higher noise than those in SOTON and CASIA, and thus can
be used to evaluate the algorithm robustness reasonably.

We evaluate the “Rank1” and “Rank5” performances of
several recent approaches including baseline algorithm
(based on silhouette shape matching) [8], GEI [1], HMM
[29], IMED+LDA [11], 2DLDA [11], DATER [10], MTP [12],
Tensor Locality Preserving Projections (TLPP) [30], and
Dynamics-Normalized Gait Recognition Algorithm
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Fig. 5. Example images from the three benchmark databases used in our evaluation experiments [8], [26], [27].

TABLE 1
The Details of the Gallery and Probe Sets

Abbreviation note: G-Grass, C-Concrete, A-Shoe A, B-Shoe B, R-Right
View, L-Left View, NB-No Briefcase, BF-Briefcase, T-Elapsed Time.



(DNGRA) [22]. The Rank1 performance means the
percentage of the correct subjects ranked first, while the
Rank5 performance means the percentage of the correct
subjects appearing in any of the first five places in the rank
list. We also report the average performance by computing
the ratio of correctly recognized subjects to the total
number of subjects.

In Section 3.1, we introduce two parameters � and � to
find the leg region of an individual. From the experiment in
Section 5.6, we can see that our proposed approach is robust
to these two parameters. Thus, we only report the
experimental results based on � ¼ 23=32 and � ¼ 29=32 in
other experiments. Note that we do not employ the
anatomical results mentioned in Section 3.1 (the knee and
ankle are 0.715 and 0.961 h, respectively) directly as we also
need to use these two parameters to decrease the influence
of some exterior factors such as briefcase and shadow. Some
examples in these database are shown in Fig. 6. From
the figure, we can see that most of the briefcase and bag is
above the upper line and most of the shadow is under the
lower line. Therefore, it means that the influence of
briefcase, bag, and shadow can be effectively decreased.

In Section 3.2, we introduce a function to map a gait
frame into different number of channels. In Section 5.5, we
conduct an experiment to evaluate the influence of the
number of channels k. We find that CGI achieves the best
recognition performance with k ¼ 3. Thus, in all the other
experiments, we only report the results based on k ¼ 3.

We also employ the fusion of real and synthetic
templates introduced in Section 4 to further improve the
performance. To make the experiment fair, we use the same
strategy to generate real and synthetic templates of GEI and
CGI, assigning the same parameters to PCA and LDA to
reduce the data set into a subspace. The fusion results are
obtained using the same formula (11).

5.2 The Effectiveness of CGI Template

To evaluate the performance of the proposed CGI

temporal information preserving template, we employ a
simple 1-nearest neighbor classifier (1-NN) on the original
GEI and CGI without using real/synthetic templates and
Principal Component Analysis/Linear Discriminant
Analysis (PCA/LDA). We also provide the performance
of the baseline algorithm [8] in the USF HumanID

database for comparison. The results are summarized in
Table 2. It can be seen from Table 2 that 1) CGI achieves
the best average performance among all the algorithms.
2) CGI is very robust to the briefcase condition shown in
Experiments H, I, and J. Specifically, the accuracy is
improved by almost 20 percent compared with GEI.
3) Compared with GEI, CGI has better Rank5 performance
than GEI in 9 out of 12 conditions, while in all the
remaining three conditions, i.e., surface conditions, base-
line algorithm provides better performance than both GEI

and CGI. We can suggest that the gait templates are more
sensitive to the surface condition than the baseline
algorithm because of the shadows or some other factors.

To discover which components of the proposed CGI

temporal templates are crucial to the performance of gait
recognition, we compare the results of several variants of
the contour-based temporal template with those of the
silhouette-based template, which is employed by most of
the gait recognition systems [10]. Here, GEI-contour

means that we compute the GEI based on contour images,
and CGI-gray means that we average each CGI into a
grayscale image. Examples of GEI, GEI-contour, CGI-
gray, and CGI are shown in Fig. 7.

To save space, we only show the fusion results in Table 3.
From Table 3 it can be seen that 1) compared with GEI, GEI-
contour and CGI obtain a remarkable improvement on
Experiments H, I, J. Furthermore, CGI is slightly better than
GEI-contour. It means the key to the improvement on
briefcase condition is contour. One possible reason is that
contour weakens the influence from regions inside the
briefcase’s silhouettes. 2) We also notice that CGI and GEI

perform much better than GEI-contour on Experiments D,
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Fig. 6. Gait examples with two additional lines. The upper line is at �h
and the lower one is at �h (h is the height of an individual). Figures in the
first row, the second row, and the third row are collected from the USF
HumanID Gait Database, CASIA Gait Database, and Soton Large Gait
Database, respectively.

TABLE 2
Comparison of Recognition Performance

on the USF HumanID Database Using 1-NN

Fig. 7. From left to right: GEI, GEI-contour, CGI-gray, CGI obtained
from the same gait sequence.



E, F, G. It indicates that although contour instead of
silhouette degenerates the recognition performances on
surface condition, using the proposed CGI temporal
information preserving template can make up for such loss
and further improve the performance of gait recognition.
3) Compared with CGI-gray, CGI has better Rank1
performance in 9 out of 12 specific conditions and improves
the average recognition ratio by about 5 percent. We can
thus infer that with the proposed multichannel encoding
technique, the temporal information of the gait sequence
benefits gait recognition.

5.3 Environments and the Number of Training Data

We compare CGI and GEI on the CASIA database (Dataset
B). As there are 10 gait sequences for each individual, we
can adopt any one of them as the training data and generate
one CGI template and one GEI template for each
individual, and use the remaining nine gait sequences as
testing data. Then, we employ a 1-NN classifier to identify
each testing gait sequence based on the euclidean distance.
Note that here we do not generate real and synthetic
templates since: 1) There are only one or two complete gait
periods in the CASIA gait sequence, thus generating real
templates is meaningless. 2) The quality of background
subtraction is quite good in the CASIA Gait Database and
the shadows have been efficiently removed; therefore we do
not need to generate synthetic templates here. Obviously,
there are 10� 9 ¼ 90 different pairs of training data and
testing data. To identify the influence of different environ-
ments, we categorize them into nine groups according to
the sampling environments.

The experimental results are summarized in Table 4.
The first column means different training environments
and the first row means different testing environments.

The recognition rate in each cell is the average of all the
experiments belonging to this group. For example, there are
12 experiments belonging to the case where the training
environment is normal condition and the testing environ-
ment is walking with a bag. It can be seen from Table 4 that
1) when we focus on the three numbers on the diagonal, we
can find that GEI has better performance than CGI in all the
three groups. It means that when the training and testing
environments are the same, the performance of GEI is
slightly better than that of CGI. 2) CGI wins in all six
groups left and improves the accuracy by more than
15 percent on average. That means CGI performs better
when the training environment and the testing environ-
ment are different. Therefore, we can further validate the
conclusion drawn from the experiments on the USF
HumanID database, i.e., CGI is more robust than GEI for
the external environment.

We can observe one interesting phenomenon from the
previous experiment, i.e., under a different training and
test environment, CGI makes a significant improvement
compared with GEI due to its robustness to external
environment. However, under the same environment, CGI
performed slightly worse than GEI. One possible reason is
the insufficient number of training samples. Specifically, in
the CASIA database there are only one or two complete
gait periods in one gait sequence, while in the USF
database there are more than five complete gait periods
in one gait sequence. Considering the fact that the GEI

template is the average of all the frames in one gait
sequence while CGI template is the average of PGIs
representing each 1=4 gait period defined in Section 3.2.
Therefore, CGI may need more training data than GEI.
That may be one limitation of CGI.

To further validate this hypothesis, we evaluate it on the
USF Database (Manual Silhouettes Version) [28], which
contains only one gait period in each gait sequence. We
found that CGI cannot perform as well as GEI in this
situation. CGI losses 4.17 and 0.93 percent on Rank1 and
Rank5 performance, respectively, compared with GEI. It
justifies the limitation of CGI again when only one period
exists in a gait sequence.

Furthermore, we carry out another experiment to study
on the relationship between the number of training data
and the recognition rate. We divide the CASIA database
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TABLE 3
Comparison of Recognition Performance of GEI, GEI-contour, CGI-gray, CGI on USF HumanID Database

TABLE 4
Under Different Training and Testing Environments,
the Comparison of Rank1 Performance of GEI/CGI

on the CASIA Database Using 1-NN (Percent)



into two parts: the first five sequences captured under
normal conditions and the other five gait sequences. To
control the number of training data, we introduce a
parameter K ¼ 1; 2; 3; 4; 5, which means we use the first
K gait sequences in the first part as training data. The gait
template for one individual is the average of all the
templates representing that the gait sequence belongs to
this individual in the training data. And we use the second
part as the testing data. The experimental results are
illustrated in Table 5.

From Table 5, we can find that:

1. Both GEI and CGI perform better when they have
more training data (in most situations).

2. With the increment of K, the recognition rate of CGI
grows faster than that of GEI.

3. When the training and testing environments are
the same (NM-06), the recognition rate of CGI can
finally exceed that of GEI with the increment of K.

4. The performance on bag and cloth conditions can
also benefit from the increment of training data
under different conditions (normal condition here).

And the improvement of CGI is larger than that of GEI.
Therefore, the robustness of CGI to external environment
can cover the limitation to some degree since even if we

cannot get enough data under one particular condition, we
can use the data captured under other conditions to
achieve a better CGI template.

In addition, we study the relationship between the number
of training data and recognition rate on the Soton Large Gait
Database. Making this experiment on this database has the
following advantages: 1) Similarly to CASIA, most gait
sequences in this database consist of one or two complete
gait periods; 2) there are enough gait sequences for the same
individual under the same environment, that is to say, there
are 2,162 gait sequences under this condition so each
individual has more than six gait sequences; 3) the silhouette
qualities of the Soton Database are pretty high.

We choose K gait sequences randomly as training data
and use the remaining sequences as testing data. The
experimental results shown in Table 6 are the average of
20 repetitions. From Table 6 we can see that both CGI and
GEI can benefit from the increment of training data. And
CGI achieves better recognition performance. Since Soton
Database provides high-quality gait frames, each of which
is sampled under the same environment, it suggests that
the limitation of CGI may be alleviated through improving
the sampling qualities to reduce the noise.

5.4 Comparison with Other Published Algorithms

Finally, we compare our proposed algorithm with several
recently published results on the USF HumanID database.
The results are listed as in Table 7. We can see that CGI
outperforms most of them on average Rank1/Rank5
performances, and is robust under most of the complex
conditions. Note that we also achieve better results
compared with our previous work [16] (61.69 percent
versus 60.54 percent) because of the improvement on the
CGI algorithm in this paper.

It is also worth mentioning that the time and space
complexities of CGI are quite small. Furthermore, it can
achieve competitive performance with some sophisticated
approaches, e.g., pHMM employed by Liu and Sarkar
[22] (DNGRA). Specifically, the time complexity of
generating all CGI templates for each training and test
data is �ðNtrTWHkþNteTWHkÞ, whereas pHMM takes
�ðNtrTWHIKmeans þNtrTWHN2

s IpHMM þNteTWHN2
s Þ to

generate the dynamics-normalized stance-frames for each
training and test data. Here, Ntr and Nte are the number
of gait sequences in training data and test data,
respectively. T means the average number of frames in
each gait sequence. W and H are the width and height of
each frame, respectively. k denotes the number of
channels in CGI. Ns is the number of states in the
pHMM model in DNGRA, while IKmeans and IpHMM are
the numbers of iteration for K-means clustering and
pHMM training, respectively. Let Str ¼ NtrTWH and
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TABLE 5
Comparison of Recognition Performance of GEI and CGI Using

Different Numbers of Training Data on the CASIA Database

Abbreviation note: NM-Normal, BG-Bag, CL-Cloth.

TABLE 6
Performance Comparison (Percent) of GEI and CGI Using Different Numbers of Training Data on the Soton Large Database



Ste ¼ NteTWH be the sizes of training data and test data,

respectively. We can rewrite the time complexity of CGI

and DNGRA into

�ðkStr þ kSteÞ;�ððIKmeans þN2
s IpHMMÞStr þN2

s SteÞ:

Note that we often choose k ¼ 3 in CGI, while Ns ¼ 20,

IKmeans > 10 in DNGRA [22] (note that IpHMM is not

mentioned in [22]). It is obvious that CGI is much faster

than DNGRA, while the recognition performances provided

by these two algorithms are competitive. In fact, CGI can

process more than 50 frames each second,1 making CGI

quite competitive in real-time scenarios.

5.5 Effects of the Number of Channels

In Section 3.2, we introduced a function to map a gait frame

into different number of channels. Here, we perform an

experiment to evaluate the influence of the number of

channels k on the USF Database. In this experiment, we

generate real and synthetic CGI templates with the fusion

strategy introduced in Section 4. The reported results are

the average recognition performance on 12 probe sets here.
The experiment result is illustrated in Fig. 8. We can see

that both Rank1 and Rank5 Performance rise in the

beginning and then drop down rapidly with the increment

of the number of channels k. Both Rank1 and Rank5

performance achieves the best performance when k ¼ 3.
One plausible interpretation is that when k is small, e.g., 1
or 2, the temporal information is less preserved in the CGI
template and thus leads to a worse performance. On the
other hand, considering that there are nine frames on
average in a 1=4 gait period in USF database and each
channel will only employ a small part of these frames to
encode temporal information (5). When we use four or more
channels to generate a PGI, each channel may get two or
less frames. Consequently, the performance is impaired by
the insufficiency of training samples.

Similarly to the USF Database, CASIA Database and
Soton Database also have nine frames in a 1=4 gait period
on average. Therefore, we perform our proposed multi-
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Fig. 8. Recognition performance using the CGI template with different
numbers of channels.

TABLE 7
Comparison of Recognition Performance (Percent) on the USF HumanID Database Using Different Methods

1. We run a Matlab code on a machine with an Intel Core2 Duo CPU
T9600 2.80 GHZ and 3 GB of DDR3 memory.



channel technique with the number of channels k ¼ 3 in the
other experiments since it makes a good tradeoff between
preserving the temporal information in different phases of a
gait period and demand on more training samples assign-
ing to each channel.

5.6 The Robustness of �, � and Edge Detection

In this experiment, we investigate the influence of � and � on
the USF Database. We manually tuned � and � around the
relative vertical position of knee and ankle (0:715 and 0:961 h).
Specifically, we tuned� in f22=32; 23=32; 24=32; 25=32g and �
in f28=32; 29=32; 30=32g (considering the influence of sha-
dow, the value of � will be less than 0.961). The result is
reported in Table 8. We can see that the differences of
recognition rate with different� and� values are quite subtle.
The reason for the robustness is that the selection of � and �
only affects the calculation of the average width of leg region
W , but such an influence would not degenerate the
performance of two crucial steps inCGI, i.e., period detection
and calculating the mapping function shown in (4). First,
we only use the local minimum and maximum of W to find
some key frames and estimate the gait period. Second, we use
the relative ratio of W in one period in the multichannel
mapping (4). These two factors always depend on the relative
variances of W rather than a specific value of W . Conse-
quently, it leads to the conclusion thatCGI is robust to� and�
in some degree. With this good property, we can safely set �
and � as some typical values when evaluating our method.

In our proposed approach, we employ local information
entropy to extract the contour of the silhouette image.
However, there exist many edge detection techniques, such
as LoG operator, Sober operator, Canny operator, etc.
Furthermore, for a binary image, there are several simple
techniques, e.g., the morphology approach (the difference
between the original image and the image after erosion by a
3� 3 square mask) and extracting the perimeter pixels of
the silhouette (function “bwperim” in matlab), etc. In this
experiment, we compare the performance of CGI using
different edge detection techniques. The experimental
results are illustrated in Table 9.

From Table 9 we can see that the performance using local
information entropy is significantly better than the others.
One possible reason is that other edge detection techniques
only provide a binary result of each pixel to be either edge
or nonedge, while local information entropy provides more
information about the degree of each pixel to be a contour
pixel of the silhouette. It is also worth noting that local
information entropy does not bring additional computing
time complexity compared with the other edge detection
techniques. Therefore, we employ local information entropy
as the edge detection technique in CGI.

5.7 Period Detection and Fusion Functions

With the same parameter settings, we also investigate the
influence of gait period detection, as tabulated in Table 10.
We observe from Table 10 that the divergence between the
two detection methods is minor in almost all the experi-
ments expect for a few groups of experiments highlighted
in the table. One reason is that GEI, which uses the
arithmetic average to generate the gait energy image, is
insensitive to key frame selection and period detection. At
the same time, this experiment indicates that our method is
robust to the period detection, and it can work well using a
basic period detection method. What’s more, it may work
better if employing an advanced period detection method.
Furthermore, CGI performs better than GEI when using
both period detection methods.

In Section 4, furthermore, we mentioned that we use
different fusion functions from those used in Han and
Bhanu’s work [1]. The fusion function in [1] is

dðR̂p; Ŝp;Ri;SiÞ ¼
cðc� 1ÞdðR̂p;RiÞ

2
Pc

i¼1

Pc
j¼1;j 6¼i dðR̂p;RjÞ

þ cðc� 1ÞdðŜp;SiÞ
2
Pc

i¼1

Pc
j¼1;j6¼i dðŜp;SjÞ

;

where dðR̂p;RjÞ and dðŜp;SjÞ are the distance between two
templates, c is the number of classes, i.e., the number of
subjects here.

In this experiment, we use two different fusion functions
and keep the other experimental conditions the same. The
results shown in Table 10 indicate that 1) the differences
between the proposed fusion criterion and theirs are quite
subtle with respect to recognition accuracy, and 2) when
using F1, both the Rank1 and Rank5 average recognition
rates are slightly better than using F2 for GEI and CGI.

6 CONCLUSION

In this paper, we have proposed a simple but effective
temporal information preserving template CGI for gait
recognition. We extract a set of contour images from the
corresponding silhouette images using the local entropy
principle, and encode the temporal information of gait
sequence into the CGI using the multichannel technique.
We also generate CGI-based real and synthetic temporal
templates and exploit the fusion strategy to obtain better
performance. Experiments on three benchmark databases
have demonstrated that compared with state-of-the-art
algorithms, ourCGI template can attain higher or comparable
recognition accuracy with good robustness and efficiency.

In the future, we will explore how to enhance CGI’s
robustness in more complex conditions, and investigate
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TABLE 9
Comparison of Average Rank1 and Rank5 Performances of CGI
Using Different Edge Detection Techniques on USF Database

TABLE 8
Comparison of Average Rank1/Rank5 Performance of CGI

Using Different � and � Values on the USF Database



how to select a more general multichannel mapping
function instead of the current linear mapping function. In
addition, we will study how to make CGI effective when the
gait sequence only contains few gait periods. We will also
consider generalizing the proposed frameworks into other
human-movement-related fields [31], [32] such as gesture
recognition and abnormal behavior detection.
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